98%
921
2 minutes
20
Active life monitoring via chemosensitive sensors could hold promise for enhancing athlete monitoring, training optimization, and performance in athletes. The present work investigates a resistive flex sensor (RFS) in the guise of a chemical sensor. Its carbon 'texture' has shown to be sensitive to CO, O, and RH changes; moreover, different bending conditions can modulate its sensitivity and selectivity for these gases and vapors. A three-step feasibility study is presented including: design and fabrication of the electronic read-out and control; calibration of the sensors to CO, O and RH; and a morphological study of the material when interacting with the gas and vapor molecules. The 0.1 mm curvature performs best among the tested configurations. It shows a linear response curve for each gas, the ranges of concentrations are adequate, and the sensitivity is good for all gases. The curvature can be modulated during data acquisition to tailor the sensitivity and selectivity for a specific gas. In particular, good results have been obtained with a curvature of 0.1 mm. For O in the range of 20-70%, the sensor has a sensitivity of 0.7 mV/%. For CO in the range of 4-80%, the sensitivity is 3.7 mV/%, and for RH the sensitivity is 33 mV/%. Additionally, a working principle, based on observation via scanning electron microscopy, has been proposed to explain the chemical sensing potential of this sensor. Bending seems to enlarge the cracks present in the RFS coverage; this change accounts for the altered selectivity depending on the sensor's curvature. Further studies are needed to confirm result's reliability and the correctness of the interpretation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478886 | PMC |
http://dx.doi.org/10.3390/s24196182 | DOI Listing |
J Phys Chem Lett
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
A highly sensitive, self-powered position-sensitive detector (PSD) based on a PEDOT:PSS/Si heterojunction is prepared. Band structure optimization via FS-300 additive doping significantly enhances the built-in electric field, achieving a maximum open-circuit voltage of 0.45 V (0.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.
View Article and Find Full Text PDFHeart Rhythm O2
August 2025
Joseph F. Novogratz Family Heart Rhythm Science Center, Minneapolis Heart Institute Foundation, Minneapolis, Minnesota.
Background: In 2021, Boston Scientific (BSC) announced that its Ingenio pacemakers (PMs) could exhibit high internal battery impedances (HIBIs) and trigger the safety mode (SM) that should preserve pacing when PM function is jeopardized. SM is VVI or biventricular pacing, 72.5 bpm, and unipolar, with a sensitivity of 0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
A novel ternary synergistic photoelectrochemical (PEC) probe is presented utilizing metal-organic framework (MOF)-templated Pd/CdS@CoS nanocages for sensing chlorpyrifos (CPF) using chronoamperometry under an applied bias of - 65 mV with 465-nm LED illumination. Derived from ZIF-67 via in situ sulfidation, the hollow nanocage architecture integrated CdS nanoparticles with CoS to form a direct Z-scheme heterojunction, while decorating Pd quantum dots (QDs) created a Schottky barrier, implementing a crucial dual charge-transfer enhancement strategy. Density functional theory (DFT) simulations confirmed a 0.
View Article and Find Full Text PDF