Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: This study aims to unravel the mechanisms underlying M2 macrophage polarization in head and neck squamous cell carcinoma (HNSCC), and identify potential therapeutic targets.
Materials And Methods: We conducted an integrated bioinformatic analysis using HNSCC bulk transcriptomes from TCGA and GEO databases to pinpoint critical factors influencing M2 macrophage polarization and tumor prognosis. The significance of these genes was validated in function analysis, single-cell transcriptome datasets, and in vitro experiments. Their mechanisms in modulating M2 macrophage polarization were further explored by gene knockdown, cell coculture, and other assays for quantification.
Results: We identified a novel prognostic signature of five genes associated with M2 macrophage infiltration, in which SCG2 emerged as a pivotal factor in M2 macrophage polarization in HNSCC. High expression of SCG2 in tumor patients correlated with poorer prognoses, and knocking down SCG2 reduced the proliferation and migration of HNSCC cells, disrupting M2 macrophage polarization. Furthermore, interference of SCG2 resulted in a significant decrease in the secretion of pro-tumor cytokines such as CCL2 and TGFβ1.
Conclusions: Our findings provide deeper insights into the pathogenesis of HNSCC and offer promising therapeutic targets for HNSCC, especially SCG2, to inhibit M2 macrophage polarization and modulate cytokine secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/odi.15154 | DOI Listing |