98%
921
2 minutes
20
The analysis of biopharmaceuticals for charge variants occurs from early-stage samples through formulation and process-development optimization. Higher throughput methods allow increased analysis of these samples to facilitate greater understanding of the samples and to better optimize their production and formulation. To enable higher throughput charge variant analysis, a new, rapid platform imaged capillary isoelectric focusing (icIEF) method was optimized to be two to three times faster than standard methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662200 | PMC |
http://dx.doi.org/10.1002/elps.202400117 | DOI Listing |
Adv Mater
September 2025
Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.
Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.
View Article and Find Full Text PDFIntroduction: Congenital Hypogonadotropic Hypogonadism (CHH) arises from defects in the synthesis, secretion, or action of gonadotropin-releasing hormone (GnRH), resulting in incomplete or absent pubertal development and various non-reproductive features. CHH is genetically heterogeneous, with over 50 genes implicated in its pathogenesis. This study aimed to elucidate the genetic variants of CHH in a cohort of patients from a single-center endocrinology unit.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFLangmuir
September 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China.
Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.
View Article and Find Full Text PDF