98%
921
2 minutes
20
Background: Traditional Chinese opera, such as , requires actors to master sophisticated performance skills and cultural knowledge, potentially influencing brain function. This study aimed to explore the effects of long-term opera training on the dynamic amplitude of low-frequency fluctuation (dALFF) and dynamic functional connectivity (dFC).
Methods: Twenty professional well-trained actors and twenty demographically matched untrained subjects were recruited. Resting-state functional magnetic resonance imaging (fMRI) data were collected to assess dALFF differences in spontaneous regional brain activity between the actors and untrained participants. Brain regions with altered dALFF were selected as the seeds for the subsequent dFC analysis. Statistical comparisons examined differences between groups, while correlation analyses explored the relationships between dALFF and dFC, as well as the associations between these neural measures and the duration of training.
Results: Compared with untrained subjects, professional actors exhibited significantly lower dALFF in the right lingual gyrus. Additionally, actors showed increased dFC between the right lingual gyrus and the bilateral cerebellum, as well as between the right lingual gyrus and the bilateral midbrain/red nucleus/thalamus, compared with untrained subjects. Furthermore, a negative correlation was found between the dALFF in the right lingual gyrus and its dFC, and a significant association was found between dFC in the bilateral midbrain/red nucleus/thalamus and the duration of training.
Conclusion: Long-term engagement in training induces neuroplastic changes, reflected in altered dALFF and dFC. These findings provide evidence for the interaction between artistic training and brain function, highlighting the need for further research into the impact of professional training on cognitive functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466935 | PMC |
http://dx.doi.org/10.3389/fnins.2024.1477181 | DOI Listing |
Cereb Cortex
August 2025
School of Psychology, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, United Kingdom.
Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.
View Article and Find Full Text PDFJ Vis
September 2025
Neuroscience Program, Western University, London, ON, Canada.
Studies of visual face processing often use flat images as proxies for real faces due to their ease of manipulation and experimental control. Although flat images capture many features of a face, they lack the rich three-dimensional (3D) structural information available when binocularly viewing real faces (e.g.
View Article and Find Full Text PDFEur J Neurosci
September 2025
The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).
View Article and Find Full Text PDFCereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
Acting intentionally is a major aspect of human cognitive development and depends on the ability to link actions with their consequences. Action-effect binding (AEB) is a fundamental mechanism enabling this. While AEB has been well-characterized in adults, its neurophysiological underpinnings during adolescence remain unclear.
View Article and Find Full Text PDF