Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous deep-learning models have been developed using task-specific data, but they ignore the inherent connections among different tasks. By jointly learning a wide range of segmentation tasks, we prove that a general medical image segmentation model can improve segmentation performance for computerized tomography (CT) volumes. The proposed general CT image segmentation (gCIS) model utilizes a common transformer-based encoder for all tasks and incorporates automatic pathway modules for task prompt-based decoding. It is trained on one of the largest datasets, comprising 36,419 CT scans and 83 tasks. gCIS can automatically perform various segmentation tasks using automatic pathway modules of decoding networks through text prompt inputs, achieving an average Dice coefficient of 82.84%. Furthermore, the proposed automatic pathway routing mechanism allows for parameter pruning of the network during deployment, and gCIS can also be quickly adapted to unseen tasks with minimal training samples while maintaining great performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471818PMC
http://dx.doi.org/10.1038/s44172-024-00287-0DOI Listing

Publication Analysis

Top Keywords

image segmentation
12
automatic pathway
12
segmentation model
8
segmentation tasks
8
pathway modules
8
segmentation
6
tasks
6
general computed
4
computed tomography
4
tomography image
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.

Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.

View Article and Find Full Text PDF

AI-informed retinal biomarkers predict 10-year risk of onset of multiple hematological malignancies.

Eur J Cancer

August 2025

Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:

Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.

View Article and Find Full Text PDF

PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.

View Article and Find Full Text PDF

Abtract: PURPOSE: To evaluate the correlation between corneal backscatter and visual function in patients with Fuchs endothelial corneal dystrophy (FECD).

Study Design: Prospective case series.

Methods: This study included 53 eyes from 38 patients with FECD.

View Article and Find Full Text PDF