Machine Learning for Prediction of Postoperative Delirium in Adult Patients: A Systematic Review and Meta-analysis.

Clin Ther

Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This meta-analysis aimed to evaluate the performance of machine learning (ML) models in predicting postoperative delirium (POD) and to provide guidance for clinical application.

Methods: PubMed, Embase, Cochrane Library, and Web of Science databases were searched from inception to April 29, 2024. Studies reported ML models for predicting POD in adult patients were included. Data extraction and risk of bias assessment were performed using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis - AI (TRIPOD-AI) and Prediction model Risk Of Bias ASsessment Tool (PROBAST) tools. Meta-analysis with the area under the curve (AUC) was performed using MedCalc software.

Findings: A total of 23 studies were included after screening. Age (n = 20, 86.95%) and Random Forest (RF) (n = 24, 17.27%) were the most frequently used feature and ML algorithm, respectively. The meta-analysis showed an overall AUC of 0.792. The ensemble models (AUC = 0.805) showed better predictive performance than single models (AUC = 0.782). Additionally, considerable variations in AUC were found among different ML algorithms, with AdaBoost (AB) demonstrating good performance with AUC of 0.870. Notably, the generalizability of these models was uncertain due to limitations in external validation and bias assessment.

Implications: The performance of ensemble models were higher than single models, and the AB algorithms demonstrated better performance, compared with other algorithms. However, further research was needed to enhance the generalizability and transparency of ML models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinthera.2024.09.013DOI Listing

Publication Analysis

Top Keywords

machine learning
8
postoperative delirium
8
adult patients
8
models
8
models predicting
8
risk bias
8
bias assessment
8
prediction model
8
ensemble models
8
models auc
8

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF