Cryo-EM structures of cardiac muscle α-actin mutants M305L and A331P give insights into the structural mechanisms of hypertrophic cardiomyopathy.

Eur J Cell Biol

Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac muscle α-actin is a key protein of the thin filament in the muscle sarcomere that, together with myosin thick filaments, produce force and contraction important for normal heart function. Missense mutations in cardiac muscle α-actin can cause hypertrophic cardiomyopathy, a complex disorder of the heart characterized by hypercontractility at the molecular scale that leads to diverse clinical phenotypes. While the clinical aspects of hypertrophic cardiomyopathy have been extensively studied, the molecular mechanisms of missense mutations in cardiac muscle α-actin that cause the disease remain largely elusive. Here we used cryo-electron microscopy to reveal the structures of hypertrophic cardiomyopathy-associated actin mutations M305L and A331P in the filamentous state. We show that the mutations have subtle impacts on the overall architecture of the actin filament with mutation-specific changes in the nucleotide binding cleft active site, interprotomer interfaces, and local changes around the mutation site. This suggests that structural changes induced by M305L and A331P have implications for the positioning of the thin filament protein tropomyosin and the interaction with myosin motors. Overall, this study supports a structural model whereby altered interactions between thick and thin filament proteins contribute to disease mechanisms in hypertrophic cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611453PMC
http://dx.doi.org/10.1016/j.ejcb.2024.151460DOI Listing

Publication Analysis

Top Keywords

cardiac muscle
16
muscle α-actin
16
hypertrophic cardiomyopathy
16
m305l a331p
12
thin filament
12
mechanisms hypertrophic
8
missense mutations
8
mutations cardiac
8
muscle
5
hypertrophic
5

Similar Publications

Historical and Potential Modern Uses of Negative-Pressure Ventilation for Critically Ill Patients.

Respir Care

September 2025

Dr. Thomasian and Prof. Wunsch are affiliated with Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA.

Negative-pressure ventilation (NPV) is a form of noninvasive respiratory support in which an external subatmospheric pressure is applied to the thorax to facilitate lung expansion. Although largely supplanted by positive-pressure ventilation (PPV) in modern-day practice, NPV has garnered renewed interest as a potential noninvasive adjunct or alternative to PPV. Appropriate patient selection would be key, particularly in the ICU setting, where NPV is generally contraindicated in patients with severe upper airway obstruction, high oxygenation requirements, or absent airway reflexes.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Intense hepatobiliary uptake of [Tc]Tc-sestamibi in myocardial perfusion scintigraphy (MPS) often degrades image quality by obscuring the inferior myocardial wall, leading to equivocal studies. While nonpharmacological interventions are inconsistent, the choleretic agent ursodeoxycholic acid (UDCA) could potentially accelerate hepatic clearance. The effectiveness of a convenient, single-dose UDCA intervention has not been rigorously evaluated.

View Article and Find Full Text PDF

Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile machinery and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at the cardiac Z-disc, the sarcomere border, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiac myocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that siRNA-mediated depletion of ACTN1 disrupts sarcomere assembly, and that exogenous re-introduction of ACTN1 but not ACTN2 restores assembly, revealing non-redundant functions.

View Article and Find Full Text PDF