Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Physical reservoir-based reservoir computing (RC) systems for intelligent perception have recently gained attention because they require fewer computing resources. However, the system remains limited in infrared (IR) machine vision, including materials and physical reservoir expression power. Inspired by biological visual perception systems, the study proposes a near-infrared (NIR) retinomorphic device that simultaneously perceives and encodes narrow IR spectral information (at ≈980 nm). The proposed device, featuring core-shell upconversion nanoparticle/poly (3-hexylthiophene) (P3HT) nanocomposite channels, enables the absorption and conversion of NIR into high-energy photons to excite more photo carriers in P3HT. The photon-electron-coupled dynamics under the synergy of photovoltaic and photogating effects influence the nonlinearity and high dimensionality of the RC system under narrow-band NIR irradiation. The device also exhibits multilevel data storage capability (≥8 levels), excellent stability (≥2000 s), and durability (≥100 cycles). The system accurately identifies NIR static and dynamic handwritten digit images, achieving recognition accuracies of 91.13% and 90.07%, respectively. Thus, the device tackles intricate computations like solving second-order nonlinear dynamic equations with minimal errors (normalized mean squared error of 1.06 × 10⁻ during prediction).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602693 | PMC |
http://dx.doi.org/10.1002/adma.202411225 | DOI Listing |