98%
921
2 minutes
20
Atopic dermatitis is the most common inflammatory skin condition with a severe negative impact on patients' quality of life. The etiology of AD is complex and depends on age, genetics, the immune system, environmental factors, and the skin microbiome, with a key role for pathogenic Staphylococcus aureus in the development of severe AD. However, the composition of the skin microbiome in mild AD is understudied. Here, using metagenomic shallow shotgun sequencing, we showed that mild AD lesions did not show a significant difference in the diversity of the skin microbiome compared to samples from non-AD patients and that the relative abundance of S. aureus did not differ in these mild AD lesions. However, when we assessed other taxa, Mycobacterium ostraviense, Pedobacter panaciterrae_A and four Streptomyces species were identified with higher abundances in mild AD lesions and species of 15 genera were decreased in abundance. The highest fold decreases were observed for Paracoccus marcusii, Microbacterium lacticum, Micrococcus luteus, and Moraxella sp002478835. These microbiome compositional insights are a first step towards novel microbiome-based diagnostics and therapeutics for early intervention at the stage of mild AD and provide a path forward for the functional study of species involved in this often-overlooked patient population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467409 | PMC |
http://dx.doi.org/10.1038/s41598-024-74513-2 | DOI Listing |
Allergol Int
September 2025
Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan. Electronic address:
The epidermal immune microenvironment is a multifaceted system in which the interplay between the skin microbiome and antimicrobial peptides plays a pivotal role in sustaining skin homeostasis and preventing dysbiosis. Disruption of these interactions can lead to inflammatory skin conditions such as atopic dermatitis. This review aims to explore the complex mechanisms by which antimicrobial peptides and the skin microbiome communicate within the epidermal immune microenvironment, emphasizing causal dynamics and the dual role of antimicrobial peptides.
View Article and Find Full Text PDFIntroduction: Changes in the skin microbiome in atopic dermatitis include a reduced bacterial diversity and increased abundance of Staphylococcus aureus. Topical antibiotics and antiseptics may decrease bacterial pathogens, but lack positive effects on microbiome diversity.
Methods: In this double-blind, intraindividual vehicle-controlled pilot study, n = 20 patients received a gel containing a defined extract (Spiralin®) of the microalgae Spirulina platensis, previously shown to exert anti-microbial effects, or vehicle on target lesions of similar size and clinical activity.
J Pediatr (Rio J)
September 2025
Universidade de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Objective: One of the possible causes of skin microbiome imbalance is the use of dermocosmetics with inadequate pH. This study aims to critically evaluate several children's moisturizers regarding their characteristics so that we can verify the tendency of the products available on the market and whether they are slightly acidic. The importance of dermocosmetics formulated without ingredients with allergenic potential is also discussed in this work.
View Article and Find Full Text PDFEBioMedicine
September 2025
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong. Electronic address:
Background: Multidrug-resistant bacterial infections have high mortality rates and few treatment options. Synergistic combinations may improve clinical outcome but traditional strategies often damage healthy microbiome. Oxazolidinone-class antibiotics are typical last-resort drugs for treating drug-resistant bacterial infections but are becoming less effective due to resistance development.
View Article and Find Full Text PDFPediatr Allergy Immunol
September 2025
Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.