A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Yield, cell structure and physiological and biochemical characteristics of rapeseed under waterlogging stress. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapeseed (Brassica napus L.) is a major oilseed crop in the middle and lower reaches of the Yangtze River in China. However, it is susceptible to waterlogging stress. This study aimed to investigate the physiological characteristics, cellular changes, and gene expression patterns of rapeseed under waterlogging stress, with the goal of providing a foundation for breeding waterlogging-tolerant rapeseed. The results revealed that waterlogging-tolerant rapeseed exhibited higher levels of soluble sugars and antioxidant enzyme activity, particularly in the roots. Conversely, waterlogging-sensitive rapeseed displayed greater changes in malondialdehyde, proline, and hydrogen peroxide levels. Cellular observations showed that after experiencing waterlogging stress, the intercellular space of rapeseed leaf cells expanded, leading to disintegration of mitochondria and chloroplasts. Moreover, the area of the root xylem increased, the number of vessels grew, and there were signs of mitochondrial disintegration and vacuole shrinkage, with more pronounced changes observed in waterlogging-sensitive rapeseed. Furthermore, significant differences were found in the transcription levels of genes related to anaerobic respiration and flavonoid biosynthesis, and different varieties demonstrated varied responses to waterlogging stress. In conclusion, there are differences in the response of different varieties to waterlogging stress at the levels of morphology, physiological characteristics, cell structure, and gene transcription. Waterlogging-tolerant rapeseed responds to waterlogging stress by regulating its antioxidant defense system. This study provides valuable insights for the development of waterlogging-tolerant rapeseed varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462760PMC
http://dx.doi.org/10.1186/s12870-024-05599-zDOI Listing

Publication Analysis

Top Keywords

waterlogging stress
28
waterlogging-tolerant rapeseed
16
rapeseed
10
cell structure
8
rapeseed waterlogging
8
physiological characteristics
8
waterlogging-sensitive rapeseed
8
waterlogging
7
stress
7
yield cell
4

Similar Publications