Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intersectin-1 (Itsn1) is a scaffold protein that plays a key role in coupling exocytosis and endocytosis of synaptic vesicles (SVs). However, it is unclear whether and how Itsn1 regulates these processes to support efficient neurotransmission during development. To address this, we examined the calyx of Held synapse in the auditory brainstem of wild-type and Itsn1 mutant mice before (immature) and after (mature) the onset of hearing. Itsn1 was present in the pre- and postsynaptic compartments at both developmental stages. Loss of function of Itsn1 did not alter presynaptic action potentials, Ca entry via voltage-gated Ca channels (VGCCs), transmitter release or short-term depression (STD) induced by depletion of SVs in the readily releasable pool (RRP) in either age group. Yet, fast Ca-dependent recovery from STD was attenuated in mature mutant synapses, while it was unchanged in immature mutant synapses. This deficit at mature synapses was rescued by introducing the DH-PH domains of Itsn1 into the presynaptic terminals. Inhibition of dynamin, which interacts with Itsn1 during endocytosis, had no effect on STD recovery. Interestingly, we found a developmental enrichment of Itsn1 near VGCCs, which may underlie the Itsn1-mediated fast replenishment of the RRP. Consequently, the absence of Itsn1 in mature synapses led to a higher failure rate of postsynaptic spiking during high-frequency synaptic transmission. Taken together, our findings suggest that Itsn1 translocation to the vicinity of VGCCs during development is crucial for accelerating Ca-dependent RRP replenishment and sustaining high-fidelity neurotransmission. KEY POINTS: Itsn1 is expressed in the pre- and postsynaptic compartments of the calyx of Held synapse. Developmental upregulation of vesicular glutamate transporter-1 is Itsn1 dependent. Itsn1 does not affect basal synaptic transmission at different developmental stages. Itsn1 is required for Ca-dependent recovery from short-term depression in mature synapses. Itsn1 mediates the recovery through its DH-PH domains, independent of its interactive partner dynamin. Itsn1 translocates to the vicinity of presynaptic Ca channels during development. Itsn1 supports high-fidelity neurotransmission by enabling rapid recovery from vesicular depletion during repetitive activity.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP286462DOI Listing

Publication Analysis

Top Keywords

itsn1
17
mature synapses
12
releasable pool
8
synaptic vesicles
8
calyx held
8
held synapse
8
pre- postsynaptic
8
postsynaptic compartments
8
developmental stages
8
short-term depression
8

Similar Publications

Background: Long non-coding RNA ITSN1-2(lncRNA ITSN1-2) promotes fibroblast-like synovicytes (FLS) proliferation and suppress apoptosis through activation of the NOD2/RIP2 signaling pathway, thereby exacerbating synovitis in Rheumatoid arthritis (RA) pathology. Juanbi Qianggu Formula (JBQG), a clinically efficacious traditional Chinese medicine, has shown significant efficiency in inhibiting FLS activation in RA and alleviating disease progression in RA patients. However, the molecular mechanism underlying JBQG's anti-arthritic effects remains incompletely understood, particularly regarding its potential to modulate lncRNA ITSN1-2-mediated NOD2/RIP2 signaling in FLS activation.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are stable noncoding RNAs that play a crucial role in neurodegenerative diseases, and they have been implicated in the pathogenesis of postoperative cognitive dysfunction (POCD). However, their underlying molecular mechanisms in POCD remain poorly understood. This study identified hsa_circRNA_061570 as significantly upregulated in plasma after anesthesia/surgery using high-throughput circRNA microarray screening, correlating with cognitive decline.

View Article and Find Full Text PDF

Unlabelled: HER2 amplification or mutation accounts for 25% of patients with breast cancer that can advance to metastatic disease. Therefore, it is important to identify novel genes that mediate metastasis in HER2+ breast cancer. In this study, we describe a new metastatic suppressor gene, class II phosphatidylinositol 3-kinase β (Pi3kc2β), through in vivo CRISPR-Cas9 library screening of a custom-designed library targeting genes implicated in autophagy using murine HER2+ breast cancer (N418) cells.

View Article and Find Full Text PDF

Haploinsufficiency of ITSN1 is associated with a substantial increased risk of Parkinson's disease.

Cell Rep

March 2025

Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,

Despite its significant heritability, the genetic basis of Parkinson's disease (PD) remains incompletely understood. Here, in analyzing whole-genome sequence data from 3,809 PD cases and 247,101 controls in the UK Biobank, we discover that protein-truncating variants in ITSN1 confer a substantially increased risk of PD (p = 6.1 × 10; odds ratio [95% confidence interval] = 10.

View Article and Find Full Text PDF

During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane, and their spatial and temporal coordination is crucial for efficient CME. Here, we show that the scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. Live-cell imaging of genome-edited cells revealed that endogenously labeled ITSN1 is recruited during CME site stabilization and growth and that ITSN1 knockdown impairs endocytic protein recruitment during this stage.

View Article and Find Full Text PDF