Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615819PMC
http://dx.doi.org/10.1002/advs.202403572DOI Listing

Publication Analysis

Top Keywords

graph structure
16
cell graph
12
graph
8
structure learning
8
spatial transcriptomics
8
stague
6
spatially informed
4
informed graph
4
structure
4
learning extracts
4

Similar Publications

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks using total gene expression (TE) and isoform ratio (IR) data from affected ( = 210, 81% with depressive symptoms) and unaffected ( = 95) individuals. Networks were validated using advanced graph generation methods.

View Article and Find Full Text PDF

Hubs, influencers, and communities of executive functions: a task-based fMRI graph analysis.

Front Hum Neurosci

August 2025

Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.

Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.

Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.

Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.

View Article and Find Full Text PDF

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.

View Article and Find Full Text PDF

Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.

View Article and Find Full Text PDF

Introduction Simulation-based training has been a vital part of medical education since Competency-Based Medical Education (CBME) was introduced, and new guidelines since 2023 have expanded to include simulation as a mandatory methodology of teaching. This method enables learners to build and develop both technical and non-technical abilities in a safe and controlled setting, enhancing their preparedness for real-life medical scenarios. Simulation-based training improves skill acquisition and retention and enhances learners' confidence, reduces anxiety, reinforces learning, corrects errors, and promotes reflective practice, in contrast with the traditional method of teaching.

View Article and Find Full Text PDF