98%
921
2 minutes
20
Background: Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements.
Methods: Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants. These templates underwent comprehensive characterization to assess their physicochemical and mechanical attributes, employing techniques including Fourier transform infrared spectroscopy, scanning electron microscopy, and nano-computed tomography. Evaluation of their biocompatibility was conducted through interaction with primary human osteoblasts (hOB) and subsequent examination using scanning electron microscopy.
Results: The results demonstrated that composite showed intramolecular hydrogen bonding interactions with the photopolymer, while computerized tomography unveiled the porous morphology and distribution within the templates. A relatively higher porosity percentage (31.55 ± 8.70%) and compressive strength (1.53 ± 0.11 MPa) was noted for bioactive glass templates. Human osteoblast cultured on bioactive glass showed higher viability compared to other specimens. Scanning micrographs of human osteoblast on templated showed cellular adhesion and the presence of filopodia and lamellipodia.
Conclusion: In summary these templates have the potential to be used for alveolar bone regeneration in critical size defect. Photopolymerization of bioceramics may be an interesting technique for scaffolds fabrication for bone tissue engineering application but needs more optimization to overcome existing issues like the ideal ratio of the photopolymer to bioceramics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462732 | PMC |
http://dx.doi.org/10.1186/s12903-024-04978-0 | DOI Listing |
Adv Healthc Mater
September 2025
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.
Immune cells, such as macrophages, stimulated by several types of inorganic ions released from bioactive glasses secrete cytokines that promote and inhibit bone formation. In this study, the effects of borate-ion-stimulated mouse macrophages (RAW264) on the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (KUSA-A1) are investigated. KUSA-A1 is cultured with a borate-ion-containing medium and RAW264-conditioned medium, which contained the secretome released from boron-stimulated RAW264, and its osteogenic differentiation is evaluated.
View Article and Find Full Text PDFDent Mater J
September 2025
Department of Operative Dentistry, Nihon University School of Dentistry.
This study aimed to determine the influence of air abrasion on the shear bond strength (SBS) of universal adhesives when using different abrasive powders. The AquaCare Twin served as the injection device. The prepared bovine dentin specimens were air- abraded with alumina particles or bioactive glass before applying the universal adhesive (All Bond Universal, Clearfil Universal Bond Quick ER, or Scotchbond Universal Plus Adhesive).
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal.
Multi-tissue regeneration remains a critical clinical challenge due to the lack of solutions that can replicate the hierarchical heterogeneity of such complex interfaces. While biofabrication approaches, such as extrusion-based, allow replicating robust, biomimetic, and layered designs, constructs are usually hindered by inadequate phase/layer integration, poor filler dispersion, and mismatched rheological and mechanical performances. This study introduces an ink engineering strategy as a solution for integrating natural-based nanocomposites in multi-tissue regenerative approaches.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
Phosphate and phosphate invert glasses contain various elements, with a wide range of compositions. Recently, our group reported orthosilicophosphate glasses (SPGs) and the glass network structure composed of orthophosphates and orthosilicates crosslinked by cations. ZnO is an intermediate oxide that improves the chemical durability of glass.
View Article and Find Full Text PDFHead Neck
September 2025
Department of Oral Oncology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
Background: Reconstruction of head and neck mucosal defects presents unique challenges due to the anatomical complexity and functional demands of the region. Artificial biomaterials such as collagen and polyglycolic acid (PGA) sheets have gained clinical traction owing to their ease of use and reduced surgical burden. However, limitations such as local inflammation, degradation-related complications, and mechanical instability-particularly in highly mobile areas like the tongue-continue to hinder their broader application.
View Article and Find Full Text PDF