98%
921
2 minutes
20
Thorium (Th) is commonly used in various applications, but its long-term exposure poses health risks, necessitating its detection in aqueous environments. Traditional methods such as inductively coupled plasma mass spectrometry are sensitive but require complex instrumentation. Optical sensors, particularly fluorometry-based methods, are simpler, cost-effective, and selective. However, developing effective aggregation-induced emission (AIE) turn-on sensors for Th(IV) requires water-soluble fluorophores with a low background fluorescence. In the present work, we report a turn-on detection method for Th(IV) based on the AIE of the fluorophore tetra(4-sulfophenyl) ethylene (SuTPE). Th(IV)-induced aggregation of SuTPE and the simultaneous drastic enhancement of the emission property of SuTPE have been utilized for the selective sensing of Th(IV) in 100% aqueous media. The sensing mechanism was explored using ground-state absorption, steady-state and time-resolved emission, FTIR, DLS, SEM, AFM and quantum chemical studies of the SuTPE-Th(IV) complex. The selectivity of the present probe toward Th(IV) ions has been established by studying the interference of several metal ions, including lanthanides and uranyl ions. The LOD for Th(IV) was estimated to be 240 nM (56 ppb). The performance of the probe was demonstrated in tap water and diluted seawater matrixes. This work provides a significant advance for Th(IV) detection in aqueous environments, with implications for environmental monitoring and health safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c10602 | DOI Listing |
Appl Radiat Isot
September 2025
Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.
View Article and Find Full Text PDFCien Saude Colet
August 2025
Setor de Elementos Inorgânicos, Departamento de Química, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswando Cruz. Av. Brasil 4365, Manguinhos. 21040-900 Rio de Janeiro RJ Brasil.
In January 2019, the state of Minas Gerais was struck by an environmental tragedy resulting from the collapse of the Córrego do Feijão Mine Dam, in Brumadinho. On this occasion, the Military Fire Brigade of the State of Rio de Janeiro (CBMERJ) designated specialized teams for emergency intervention, in aid of agents from the local corporation involved in providing care and support to victims and residents of the affected areas. However, these professionals were exposed to mud containing substances that cause harm to health.
View Article and Find Full Text PDFAn Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Embodied intelligence in soft robotics offers unprecedented capabilities for operating in uncertain, confined, and fragile environments that challenge conventional technologies. However, achieving true embodied intelligence-which requires continuous environmental sensing, real-time control, and autonomous decision-making-faces challenges in energy management and system integration. We developed deformation-resilient flexible batteries with enhanced performance under magnetic fields inherently present in magnetically actuated soft robots, with capacity retention after 200 cycles improved from 31.
View Article and Find Full Text PDFSci Adv
September 2025
The Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
Mobile robots that simultaneously have fast speeds, sufficient load-carrying capabilities, and multiple locomotive functions have always been challenging to develop. Here, we introduce a liquid-amplified electrostatic rolling (LAER) mechanism, which elegantly integrates actuation and adhesion into a streamline single-degree-of-freedom structure. Based on this, we developed a rigid tethered LAER roller (0.
View Article and Find Full Text PDF