98%
921
2 minutes
20
Fate determination of neural stem cells (NSCs) is crucial for cortex development and is closely linked to neurodevelopmental disorders when gene expression networks are disrupted. The transcriptional corepressor chromodomain Y-like (CDYL) is widely expressed across diverse cell populations within the human embryonic cortex. However, its precise role in cortical development remains unclear. Here, we show that CDYL is critical for human cortical neurogenesis and that its deficiency leads to a substantial increase in gamma-aminobutyric acid (GABA)-ergic neurons in cortical organoids. Subsequently, neuronatin (NNAT) is identified as a significant target of CDYL, and its abnormal expression obviously influences the fate commitment of cortical NSCs. Cross-species comparisons of CDYL targets unravel a distinct developmental trajectory between human cortical organoids and the mouse cortex at an analogous stage. Collectively, our data provide insight into the evolutionary roles of CDYL in human cortex development, emphasizing its critical function in maintaining the fate of human cortical NSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2024.114814 | DOI Listing |
J Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, 999077 Hong Kong, China; Department of Psychology, The University of Hong Kong, 999077 Hong Kong, China. Electronic address:
Over the last decades, the traditional 'Homo economicus' model has been increasingly challenged by converging evidence highlighting the critical impact of emotions on decision-making. A classic example is the perception of unfairness in the Ultimatum Game, where humans willingly sacrifice personal gains to punish fairness norm violators. While emotional mechanisms underlying such costly punishment are widely acknowledged, the distinct contributions of moral emotions, particularly anger and disgust, remain debated, partly due to methodological limitations in conventional experiments.
View Article and Find Full Text PDFCurr Biol
August 2025
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
Humans and other primates are capable of learning to recognize new visual stimuli throughout their lifetimes. Most theoretical models assume that such learning occurs through the adjustment of the large number of synaptic weights connecting the visual cortex to downstream decision-making areas. While this approach to learning can optimize performance on behavioral tasks, it can also be costly in terms of time and energy.
View Article and Find Full Text PDFEpilepsy Behav
September 2025
Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. Electronic address:
Objective: Semiology-based preoperative anatomical hypotheses are necessary, yet comprehensive reports on the semiology and its correlation with central subregions in central epilepsy has still lacked. We wished to identify semiologic subgroups and their correlations with central subregions.
Methods: We retrospectively included 21 patients with central epilepsy identified by stereoelectroencephalography (sEEG).
Cell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDF