98%
921
2 minutes
20
Objective: This study aimed to investigate [F]fluorodeoxyglucose positron emission tomography ([F]FDG PET) mapping for cerebral glucose metabolism in drug-sensitive and drug-resistant pediatric epilepsy patients.
Methods: This retrospective study enrolled 40 patients and 25 controls. Patients were categorized into drug-sensitive epilepsy (n = 22) and drug-resistant epilepsy (n = 18) according to the seizure frequency at follow-up. All patients underwent two [F]FDG PET scans separated by a minimum of one year. Absolute asymmetry index (|AI|) was calculated for assessing metabolic differences and changes in epileptic foci. Statistical Parametric Mapping (SPM) was utilized to reveal voxel-wise metabolic characteristics and alterations throughout the brain. Network analysis based on graph theory was used to investigate network-level differences between the two patient groups.
Results: The drug-sensitive group showed a lower |AI| at both baseline (P = 0.038) and follow-up (P = 0.003) PET scans than the drug-resistant group. |AI| decreased in the drug-sensitive group and increased in the drug-resistant group across scans, but these trends were not statistically significant (P = 0.240 and P = 0.450, respectively). Both groups exhibited hypometabolism at baseline. The drug-sensitive group showed less hypometabolic brain regions than the drug-resistant group. The drug-sensitive maintained stable level of hypometabolism between the two scans, whereas the drug-resistant group showed an increasing hypometabolism. Network analysis demonstrated that the drug-sensitive group had a higher global efficiency, average degree, and clustering, along with a shorter characteristic path length compared to the drug-resistant group.
Conclusions: For the first time, this study revealed in vivo cerebral glucose metabolic pattern of nonsurgical pediatric epilepsy patients treated by antiepileptic drugs. Especially, drug-resistant epilepsy patients represented significantly extensive and progressive hypometabolism with inefficient brain network connectivity compared with drug-sensitive epilepsy. [F]FDG PET imaging may be a potential visual approach for theranostics of epilepsy patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-024-06933-1 | DOI Listing |
J Cereb Blood Flow Metab
September 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.
View Article and Find Full Text PDFRev Esp Med Nucl Imagen Mol (Engl Ed)
September 2025
Servicio de Medicina Nuclear, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
Nucl Med Biol
September 2025
Department of Nuclear Medicine, Hannover Medical School, Germany. Electronic address:
Purpose: The liver-brain axis regulates metabolic homeostasis, with glucose metabolism playing a key role. Liver dysfunction, such as fibrosis, may impact brain metabolism and consequently, brain function. Positron emission tomography (PET) imaging provides a non-invasive approach to study glucose metabolism in both organs.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, CHUV/UNIL, 1011, Lausanne, Switzerland.
Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).
View Article and Find Full Text PDF