Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy.

Methods And Results: We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts.

Conclusion: Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097992PMC
http://dx.doi.org/10.1093/cvr/cvae210DOI Listing

Publication Analysis

Top Keywords

db/db mice
20
fibroblast activation
16
fibrosis hypertrophy
12
mice fibroblast-specific
12
fibroblast-specific smad3
12
tbr2 loss
12
loss db/db
12
signaling mediates
8
db/db
8
systolic diastolic
8

Similar Publications

MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.

View Article and Find Full Text PDF

Bioinspired Provisional Matrix Stimulates Regenerative Healing of Diabetic Wounds.

Wound Repair Regen

September 2025

Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA.

This study tested the hypothesis that diabetic wound treatment with biomimetic pro-angiogenic, proteolytically and mechanically stable RADA16-II peptide nanofibers promotes regenerative wound healing via attenuation of inflammation and stimulation of neovascularization. Two full-thickness excisional dorsal skin wounds were created on 8-10 week old female db/db mice and treated with nanofiber hydrogel or saline (control). Animals were euthanized on days 7, 14, 28, and 56 and their wounds were analysed for morphology, vascularization, strength, and inflammation.

View Article and Find Full Text PDF

Triptolide improves microbial dysbiosis and metabolite disorder in db/db mice.

Ren Fail

December 2025

Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, China.

Background: Diabetic kidney disease (DKD) is an increasing global public health problem. Triptolide (TP) has a good therapeutic effect on DKD and is widely used in China. However, the mechanism of TP is still unclear.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a multifactorial disease in which inflammation and angiogenesis play a crucial role. SerpinE2, or protease nexin-1 (PN-1), is a protease inhibitor of the serpin family, expressed by vascular and inflammatory cells. In this study, we addressed the role of SerpinE2 in DN, using the models of streptozotocin-induced type-1 and db/db type-2 diabetes.

View Article and Find Full Text PDF

Background Type 2 diabetes (T2D) is a complex metabolic disorder characterized by impaired glucose regulation and insulin resistance and frequently accompanied by obesity and dyslipidemia. The search for novel therapeutic agents to manage these metabolic parameters remains ongoing. Pepper fruit (cv.

View Article and Find Full Text PDF