98%
921
2 minutes
20
Qudits are anticipated to streamline quantum computation by minimizing iterations, lowering error rates, and facilitating error correction. It has been shown that Dy(III)-based molecular systems can act as qudits with expanded Hilbert spaces. Achieving a robust intramolecular interaction, whether exchange or dipolar, is crucial for spanning the Hilbert space of qudits; hence, short Dy(III)⋯Dy(III) distances are required. Looking for multilevel systems that can be employed as qudits, we have synthesized and characterized two dysprosium-based isotopologues: [Dy(BTFA)(PHZP)] (1) and [Dy(BTFA)(PHZP)] (2), where BTFA = 3-benzoyl-1,1,1-trifluoroacetone and PHZP = '-[()-(pyrazin-2-yl)methylidene]pyrazine-2-carbohydrazonate. Both complexes showed slow magnetic relaxation at zero applied magnetic field. μSQUID investigations, at milli-Kelvin temperatures, and direct and alternating current magnetic measurements reveal distinctions in the magnetic behavior between the two complexes and an operative interaction between the Dy(III) centers. We find that the presence or absence of the nuclear spin plays a minor role in the magnetic properties above 2 K. On the contrary, at milli-Kelvin temperatures, μSQUID studies show enhanced relaxation in 1, attributed to several quantum tunnelling pathways enabled by hyperfine and quadrupole interactions. The interplay between the antiferromagnetic coupling and enhanced relaxation indicates that the exchange coupling influences the relaxation mechanisms at different temperature ranges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt01769b | DOI Listing |
Phys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDFPhys Rev Lett
August 2025
ShanghaiTech University, School of Physical Science and Technology, Shanghai 201210, China.
We report direct spectroscopic evidence of correlation-driven Mott states in layered Nb_{3}Cl_{8} through combining scanning tunneling microscopy (STM) and dynamical mean-field theory. The Hubbard bands persist down to monolayer, providing the definitive evidence for the Mottness in Nb_{3}Cl_{8}. While the size of the Mott gap remains almost constant across all layers, a striking layer-parity-dependent oscillation emerges in the local density of states (LDOS) between even (n=2, 4, 6) and odd layers (n=1, 3, 5), which arises from the dimerization and correlation modulation of the obstructed atomic states, respectively.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.
While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.
View Article and Find Full Text PDFNanoscale
September 2025
Quantum Technology Centre, Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1(2), Moscow, 119991, Russia.
We report the observation of negative differential resistance (NDR) in single-atom single-electron devices based on arsenic, phosphorus and potassium dopants implanted in a silicon host matrix. All devices exhibit NDR, with the potassium-based one exhibiting NDR at room temperature because of the larger charging and confinement energies. Our experimental results are reproduced with a simple model that assumes sequential electron tunnelling through two series-connected charge centres, each having two discrete energy levels.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.
View Article and Find Full Text PDF