98%
921
2 minutes
20
Background: Coronary computed tomography angiography (CCTA) has emerged as a reliable noninvasive modality to assess coronary artery stenosis and high-risk plaque (HRP). However, CCTA assessment of stenosis and HRP is time-consuming and requires specialized training, limiting its clinical translation.
Objectives: The aim of this study is to develop and validate a fully automated deep learning system capable of characterizing stenosis severity and HRP on CCTA.
Methods: A deep learning system was trained to assess stenosis and HRP on CCTA scans from 570 patients in multiple centers. Stenosis severity was categorized as >0%, 1 to 49%, ≥50%, and ≥70%. HRP was defined as low attenuation plaque (≤30 HU), positive remodeling (≥10% diameter), and spotty calcification (<3 mm). The model was then tested on 769 patients (3,012 vessels) for stenosis severity and 45 patients (325 vessels) for HRP.
Results: Our deep learning system achieved 93.5% per-vessel agreement within 1 Coronary Artery Disease-Reporting and Data System (CAD-RADS) category for stenosis. Diagnostic performance for per-vessel stenosis was very good for sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with: >0% stenosis: 90.6%, 88.8%, 83.4%, 93.9%, 89.7%, respectively; ≥50% stenosis: 87.1%, 92.3%, 60.9%, 98.1%, 89.7%, respectively. Similarly, the per-vessel HRP feature achieved very good diagnostic performance with an area under the curve of 0.80, 0.79, and 0.77 for low attenuation plaque, spotty calcification, and positive remodeling, respectively.
Conclusions: A fully automated unsupervised deep learning system can rapidly evaluate stenosis severity and characterize HRP with very good diagnostic performance on CCTA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450949 | PMC |
http://dx.doi.org/10.1016/j.jacadv.2024.100861 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDF