Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new method is described for acetone (C(CH)O) determination in water samples. The method is based on the reaction with 4-(dimethylamino)benzaldehyde (DMAB) in dimethyl sulfoxide (DMSO) in slightly basic medium, resulting in a highly fluorescent compound with fluorescent wavelengths undisturbed by other common fluorescent compounds. Experimental conditions were optimized (reagents concentrations, reaction time) to reach optimal sensitivity. For the analysis of aqueous samples, a preconcentration step of acetone by solid-phase extraction (SPE) followed by an elution step in DMSO was optimized using Isolute ENV + columns. A highly satisfactory low detection limit of 0.014 μM (0.8 μg L) was achieved by combining these two steps, with a linear range from 0.048 to 5 μM and relative standard deviations between 5.7 % and 6.9 %. The protocol was validated on complex real water samples such as river water and wastewater, and our fluorimetric method with DMAB was in good agreement with the reference LC-UV method with DNPH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126984DOI Listing

Publication Analysis

Top Keywords

water samples
12
solid-phase extraction
8
spectrofluorimetric determination
4
determination acetone
4
water
4
acetone water
4
samples
4
samples solid-phase
4
extraction benzaldehyde
4
benzaldehyde derivative
4

Similar Publications

This study introduces a new, highly sensitive, and reliable method for detecting and measuring orthophosphate in environmental water samples. This method combines cetyltrimethylammonium bromide (CTAB)-mediated coacervation extraction with digital image-based colorimetry, providing a robust and efficient approach for orthophosphate analysis. In this system, CTAB, a cationic surfactant, serves a dual role as both an ion-pairing agent and an extraction medium.

View Article and Find Full Text PDF

The mechanical properties of the polymeric substrate or matrix where a cell grows affect cell behavior. Most studies have focused on relating elastic properties of polymeric substrates, which are time-independent, to cell behaviors. However, polymeric substrates and biological systems exhibit a time-dependent, often viscoelastic, mechanical response.

View Article and Find Full Text PDF

A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF