Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims at improving the lower-limb muscle segmentation accuracy of deep learning approaches based on Magnetic Resonance Imaging (MRI) scans, crucial for the diagnostic and therapeutic processes in musculoskeletal diseases. In general, segmentation methods such as U-Net deep learning neural networks can achieve good Dice Similarity Coefficient (DSC) values, e.g. around 0.83 to 0.91 on various cohorts. Some generic post-processing strategies have been studied to incorporate connectivity constraints into the resulting masks for the purpose of further improving the segmentation accuracy. In this paper, a novel mean shape (MS) based post-processing method is proposed, utilizing Statistical Shape Modelling (SSM) to fine-tune the segmentation output, taking into consideration the muscle anatomical shape. The methodology was compared to existing post-processing techniques and a commercial semi-automatic tool on MRI scans from two cohorts of post-menopausal women (10 Training, 8 Testing, voxel size 1.0x1.0x1.0 mm3). The MS based method obtained a mean DSC of 0.83 across the different analysed muscles and the best performance for the Hausdorff Distance (HD, 20.6 mm) and the Average Symmetric Surface Distance (ASSD, 2.1 mm). These findings highlight the feasibility and potential of using anatomical mean shape in post-processing of human lower-limb muscle segmentation task and indicate that the proposed method can be popularized to other biological organ segmentation mission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452003PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308664PLOS

Publication Analysis

Top Keywords

deep learning
12
lower-limb muscle
12
muscle segmentation
12
segmentation accuracy
12
novel shape
8
shape based
8
based post-processing
8
post-processing method
8
mri scans
8
anatomical shape
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

SPACE: STRING proteins as complementary embeddings.

Bioinformatics

September 2025

Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.

Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.

Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF