Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multiple risk-prediction models are used in clinical practice to triage patients as being at low risk or high risk of ovarian cancer. In the ROCkeTS study, we aimed to identify the best diagnostic test for ovarian cancer in symptomatic patients, through head-to-head comparisons of risk-prediction models, in a real-world setting. Here, we report the results for the postmenopausal cohort.

Methods: In this multicentre, prospective diagnostic accuracy study, we recruited newly presenting female patients aged 16-90 years with non-specific symptoms and raised CA125 or abnormal ultrasound results (or both) who had been referred via rapid access, elective clinics, or emergency presentations from 23 hospitals in the UK. Patients with normal CA125 and simple ovarian cysts of smaller than 5 cm in diameter, active non-ovarian malignancy, or previous ovarian malignancy, or those who were pregnant or declined a transvaginal scan, were ineligible. In this analysis, only postmenopausal participants were included. Participants completed a symptom questionnaire, gave a blood sample, and had transabdominal and transvaginal ultrasounds performed by International Ovarian Tumour Analysis consortium (IOTA)-certified sonographers. Index tests were Risk of Malignancy 1 (RMI1) at a threshold of 200, Risk of Malignancy Algorithm (ROMA) at multiple thresholds, IOTA Assessment of Different Neoplasias in the Adnexa (ADNEX) at thresholds of 3% and 10%, IOTA SRRisk model at thresholds of 3% and 10%, IOTA Simple Rules (malignant vs benign, or inconclusive), and CA125 at 35 IU/mL. In a post-hoc analysis, the Ovarian Adnexal and Reporting Data System (ORADS) at 10% was derived from IOTA ultrasound variables using established methods since ORADS was described after completion of recruitment. Index tests were conducted by study staff masked to the results of the reference standard. The comparator was RMI1 at the 250 threshold (the current UK National Health Service standard of care). The reference standard was surgical or biopsy tissue histology or cytology within 3 months, or a self-reported diagnosis of ovarian cancer at 12 month follow-up. The primary outcome was diagnostic accuracy at predicting primary invasive ovarian cancer versus benign or normal histology, assessed by analysing the sensitivity, specificity, C-index, area under receiver operating characteristic curve, positive and negative predictive values, and calibration plots in participants with conclusive reference standard results and available index test data. This study is registered with the International Standard Randomised Controlled Trial Number registry (ISRCTN17160843).

Findings: Between July 13, 2015, and Nov 30, 2018, 1242 postmenopausal patients were recruited, of whom 215 (17%) had primary ovarian cancer. 166 participants had missing, inconclusive, or other reference standard results; therefore, data from a maximum of 1076 participants were used to assess the index tests for the primary outcome. Compared with RMI1 at 250 (sensitivity 82·9% [95% CI 76·7 to 88·0], specificity 87·4% [84·9 to 89·6]), IOTA ADNEX at 10% was more sensitive (difference of -13·9% [-20·2 to -7·6], p<0·0001) but less specific (difference of 28·5% [24·7 to 32·3], p<0·0001). ROMA at 29·9 had similar sensitivity (difference of -3·6% [-9·1 to 1·9], p=0·24) but lower specificity (difference of 5·2% [2·5 to 8·0], p=0·0001). RMI1 at 200 had similar sensitivity (difference of -2·1% [-4·7 to 0·5], p=0·13) but lower specificity (difference of 3·0% [1·7 to 4·3], p<0·0001). IOTA SRRisk model at 10% had similar sensitivity (difference of -4·3% [-11·0 to -2·3], p=0·23) but lower specificity (difference of 16·2% [12·6 to 19·8], p<0·0001). IOTA Simple Rules had similar sensitivity (difference of -1·6% [-9·3 to 6·2], p=0·82) and specificity (difference of -2·2% [-5·1 to 0·6], p=0·14). CA125 at 35 IU/mL had similar sensitivity (difference of -2·1% [-6·6 to 2·3], p=0·42) but higher specificity (difference of 6·7% [4·3 to 9·1], p<0·0001). In a post-hoc analysis, when compared with RMI1 at 250, ORADS achieved similar sensitivity (difference of -2·1%, 95% CI -8·6 to 4·3, p=0·60) and lower specificity (difference of 10·2%, 95% CI 6·8 to 13·6, p<0·0001).

Interpretation: In view of its higher sensitivity than RMI1 at 250, despite some loss in specificity, we recommend that IOTA ADNEX at 10% should be considered as the new standard-of-care diagnostic in ovarian cancer for postmenopausal patients.

Funding: UK National Institute of Heath Research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1470-2045(24)00406-6DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
reference standard
16
risk-prediction models
12
diagnostic accuracy
12
ovarian
10
postmenopausal patients
8
cancer rockets
8
multicentre prospective
8
prospective diagnostic
8
accuracy study
8

Similar Publications

Long non-coding RNAs (lncRNAs) are involved in the numerous types of tumors. The aim of this study is to comprehend the pathological mechanism of lncRNA CASC19 in ovarian cancer. CASC19, miR-761 and CBX2 expression in the samples was quantitatively detected by real-time quantitative polymerase chain reaction (RT-qPCR) reaction.

View Article and Find Full Text PDF

Ultraviolet B (UVB) radiation (280-320 nm) has been recognized as a carcinogen since 1928, leading to sun exposure minimization. However, epidemiological studies suggest that sun exposure correlates with increased life expectancy and reduced incidence of cardiovascular diseases and certain cancers such as colon and endometrial cancer. UVB exposure also influences liver metabolism, protects against hepatocellular lipotoxicity, and affects metabolic health.

View Article and Find Full Text PDF

Long non-coding RNA MALAT1 regulates epithelial-mesenchymal transition (EMT) and metastasis in epithelial ovarian cancer (EOC) through a competing endogenous RNA (ceRNA) mechanism involving miRNA modulation. This study aimed to elucidate the molecular pathway by which MALAT1 influences EMT and metastatic behavior via interaction with miR-200c-3p and SNAI2. MALAT1 expression was genetically manipulated in the EOC cell line SK-OV-3 by either overexpression or knockdown.

View Article and Find Full Text PDF

Objective: To identify and evaluate the methodological quality and psychometric properties of Patient-reported outcome measures (PROMs) for symptom assessment in patients with cancer undergoing immunotherapy.

Methods: A systematic search was performed in PubMed, Scopus, Cochrane Library, Web of Science, Embase, CINAHL, CNKI, WanFang, Vip, and SinoMed from their inception to February 10, 2025. Eligibility criteria required studies to focus on the development or validation of a PROM for symptom assessment in adult patients with cancer undergoing immunotherapy, and to report on at least one psychometric property.

View Article and Find Full Text PDF

Burden and trends of ovarian and uterine cancer due to high body mass index from 1990 to 2021: an age-period-cohort study based on the GBD 2021, and projections through 2036.

Front Oncol

August 2025

Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

Background: Ovarian cancer (OC) and uterine cancer (UC) are significant public health concerns among women of reproductive age. High body mass index (BMI) contributes to the increasing burden of these cancers globally, but comprehensive epidemiological assessments remain limited.

Methods: Data were obtained from the Global Burden of Disease (GBD) Study 2021 (1990-2021).

View Article and Find Full Text PDF