Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Our previous cryogenic electron microscopy (cryoEM) analysis showed that the core structures of α-synuclein filaments accumulated in brains of patients diagnosed with dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) patients are different. We analyzed the post-translational modifications (PTMs) in these filaments , and examined their relationship with the core filament structures and pathological features. Besides the common PTMs in MSA and DLB filaments, acetylation, methylation, oxidation and phosphorylation were frequently detected in MSA filaments, but not in DLB filaments. Furthermore, in DLB filament cases, the processing occurred at the C-terminal side of Asp at 119 residue and Asn at 122 residue, while in MSA cases, the processing occurred at multiple sites between residues 109-123. We have previously reported that PTMs in tau filaments depend on the filament core structure. This was considered to apply to α-synuclein filaments as well. As an example, PTMs including processing sites detected in α-synuclein filaments in early-onset DLB (an atypical form, now named juvenile-onset α-synucleinopathy) brain also supported this idea. These suggests that PTMs appeared to be closely related to the specific filament core structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446954PMC
http://dx.doi.org/10.1038/s41598-024-74130-zDOI Listing

Publication Analysis

Top Keywords

α-synuclein filaments
16
filaments
9
post-translational modifications
8
multiple system
8
system atrophy
8
dementia lewy
8
lewy bodies
8
core structures
8
dlb filaments
8
filaments dlb
8

Similar Publications

Carboxy-terminal tails (CTTs) of tubulin proteins are sites of regulating microtubule function. We previously conducted a genetic interaction screen and identified Kip3, a kinesin-8 motor, as potentially requiring the β-tubulin CTT (β-CTT) for function. Here we use budding yeast to define how β-CTT promotes Kip3 function and the features of β-CTT that are important for this mechanism.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

The Atlas of the Shell Proteome in Oysters Reveals the Potential Roles of the Cytoskeleton and Extracellular Matrix in Biomineralization.

J Proteome Res

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.

View Article and Find Full Text PDF

While migratory cells can quickly change their mode of migration in complex three-dimensional environments, it is not clear why. Understanding the dynamic and reciprocal relationship migrating cells have with their microenvironments may help reveal why migratory plasticity, or mode-switching, is a common feature of eukaryotic cell motility. In this review, we discuss the physical and mechanical properties of cells and the environments they move through, and how those properties can influence each other.

View Article and Find Full Text PDF

Study Objectives: There are large individual differences in the homeostatic response to sleep deprivation, as reflected in slow wave sleep (SWS) and electroencephalogram (EEG) spectral power, which have largely been left unexplained. Recent evidence suggests the possible involvement of the activity-regulated cytoskeleton-associated protein () gene. Here we assessed the effects of the "c.

View Article and Find Full Text PDF