98%
921
2 minutes
20
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide--glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III β-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440374 | PMC |
http://dx.doi.org/10.1039/d4na00625a | DOI Listing |
Int J Biol Macromol
September 2025
Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. Electronic address:
Skin aging serves as a critical indicator of systemic health decline. Despite Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) being a key therapeutic target, mechanistic understanding remains incomplete and potent, safe activators are lacking, hindering clinical progress. This study proposes the "Barrier-Skin-Systemic Aging Axis," demonstrating that epidermal barrier disruption accelerates aging via PPARγ suppression.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2025
Department of Urology, China Rehabilitation Research Center, Beijing Boai Hospital, School of Rehabilitation of Capital Medical University, Beijing, China.
This study investigated the therapeutic effects of a composite small intestinal submucosa decellularized extracellular matrix/hyaluronic acid (HA)-incorporated thermosensitive hydrogel (HA-Gel) on interstitial cystitis (IC) in rats. The HA-Gel was fabricated using rabbit small intestinal submucosa-derived extracellular matrix as a thermosensitive scaffold combined with HA, and an IC rat model was established using the UPK3A65-84 peptide. Rats were divided into five groups: IC group, IC + HA group, IC + Gel group, IC + HA-Gel group, and a non-modeled control group.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:
Pressure ulcers, resulting from prolonged external pressure or shear forces on skin and underlying tissues over bony prominences, lead to tissue ischemia and impaired lymphatic drainage. Without timely intervention, these wounds can progress to severe complications including cellulitis, chronic infections, and osteomyelitis. In this study, we developed a chitosan/sodium β-glycerophosphate/gelatin (CS/β-GP/GEL) thermosensitive hydrogel system to enhance the therapeutic efficacy of adipose-derived mesenchymal stem cells (ADSCs) in pressure ulcer healing.
View Article and Find Full Text PDFGels
August 2025
Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Republic of Korea.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies-including ink tattooing and metallic clips-are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL-PEG-PCL, and (4) PLA-PEG-PLA.
View Article and Find Full Text PDFActa Biomater
August 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China. Electronic address:
Poly(amino acid)-based thermosensitive hydrogels hold great potential for clinical translation. Herein, we employ a thermosensitive methoxy poly(ethylene glycol)-block-poly(-alanine) (mPEG-PAla) hydrogel that undergoes a sol-to-gel transition upon heating as the model system to systematically evaluates its sterilizability, storage stability, in vivo degradation and in vivo drug release profiles-critical factors for clinical translation. mPEG-PAla copolymers are synthesized via ring-opening polymerization using the optimized amount of crown ether as the catalyst, ensuring controlled polymerization while minimizing catalyst usage.
View Article and Find Full Text PDF