98%
921
2 minutes
20
Oxidative stress is a key factor in various diseases, and thus exogenous antioxidants offer effective therapeutic potential. While astaxanthin (ATX) is a potent natural antioxidant, its poor water solubility, bioavailability, and stability hinder its application. This study aimed to develop an amphiphilic chitosan-graft-poly(lactide) (CS-g-PLA) copolymer utilizing a new strategy by ring-opening polymerization of D, l-lactide via organosoluble CS/sodium dodecyl sulfate complex. Subsequently, CS-g-PLA micelles were prepared for efficient encapsulation and delivery of ATX. CS-g-PLA copolymers were characterized by FT-IR and H NMR. Transmission electron microscopy and dynamic light scattering revealed micellar morphology and size distribution. The antioxidant activity of CS-g-PLA/ATX was assessed using the DPPH assay, demonstrating significant improvement compared to free ATX. Furthermore, the cytotoxicity of micellar ATX was evaluated on HO-treated bone marrow mesenchymal stem cells (BMSCs) using MTT assay. Annexin V staining and mitochondrial membrane potential (∆Ψm) analysis revealed reduced apoptosis and enhanced protection by ATX-loaded micelles compared to free ATX. These findings suggest CS-g-PLA micelles as promising nanocarriers for ATX delivery, putatively enhancing its antioxidant potential and protecting stem cells in oxidative stress environments. This approach could hold significant implications for stem cell therapy in diseases associated with oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135280 | DOI Listing |
J Trace Elem Med Biol
September 2025
Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:
Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.
Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.
Mol Pharm
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, P. R. China.
Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE.
Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..
Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.
Exp Physiol
September 2025
Department of Hepatobiliary Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDF