Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulators are -regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of eight large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of both insulating or repressing transcription dependent upon regulatory context. We validate our findings in stable transgenic , maize, and rice plants. The short elements identified here should be useful building blocks for plant biotechnology efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429706PMC
http://dx.doi.org/10.1101/2024.09.13.612883DOI Listing

Publication Analysis

Top Keywords

repress transcription
8
short fragments
8
elements
6
small dna
4
dna elements
4
insulators
4
elements insulators
4
insulators silencers
4
silencers plants
4
plants insulators
4

Similar Publications

Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa.

J Genet Genomics

September 2025

State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd

The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.

View Article and Find Full Text PDF

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with high metastatic potential, limited treatment options, and low patient survival rates. By combining functional proteomics and genomics approaches, we identified an oncogenic transcriptional network in mesenchymal and invasive TNBC involving the glucocorticoid receptor (GR), GATA6, MYC, and AP-1 transcription factors. Although these transcription factors bound extensively to shared enhancers, they utilized different enhancer repertoires from this shared enhancer pool to drive distinct downstream oncogenic pathways.

View Article and Find Full Text PDF