Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood.

Method: We conducted kinome-wide CRISPR/Cas9 screenings in murine gliomas to identify key regulators of susceptibility to anti-PD-1 and CD8 T cell responses and performed survival studies to validate the most relevant genes. Additionally, paired single cell RNA-sequencing (scRNA-seq) with p-ERK staining, spatial transcriptomics on GB samples, and slice culture of a BRAF mutant GB tumor treated with BRAFi/MEKi were used to determine the causal relationship between MAPK signaling, tumor cell immunogenicity, and modulation of microglia phenotype.

Results: CRISPR/Cas9 screens identified the MAPK pathway, particularly the RAF-MEK-ERK pathway, as the most critical modulator of glioma susceptibility to CD8 T cells, and anti-PD-1 across all kinases. Experimentally-induced ERK phosphorylation in gliomas enhanced survival with ICB treatment, led to durable anti-tumoral immunity upon re-challenge and memory T cell infiltration in long-term survivors. Elevated p-ERK in glioma cells correlated with increased interferon responses, antigen presentation and T cell infiltration in GB. Moreover, spatial transcriptomics and scRNA-seq analysis revealed the modulation of interferon responses by the MAPK/ERK pathway in BRAF human GB cells with ERK1/2 knockout and in slice cultures of human BRAF GB tissue. Notably, BRAFi/MEKi treatment disrupted the interaction between tumor cells and tumor-associated macrophages/microglia in slice cultures from BRAF mutant GB.

Conclusion: Our data indicate that the MAPK/ERK pathway is a critical regulator of GB cell susceptibility to anti-tumoral immunity, modulating interferon responses, and antigen-presentation in glioma cells, as well as tumor cell interaction with microglia. These findings not only elucidate the mechanistic underpinnings of immunotherapy resistance in GB but also highlight the MAPK/ERK pathway as a promising target for enhancing immunotherapeutic efficacy in this challenging malignancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429708PMC
http://dx.doi.org/10.1101/2024.09.11.612571DOI Listing

Publication Analysis

Top Keywords

interferon responses
16
mapk/erk signaling
12
mapk/erk pathway
12
cell
8
immune checkpoint
8
checkpoint blockade
8
causal relationship
8
spatial transcriptomics
8
braf mutant
8
tumor cell
8

Similar Publications

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor abundantly expressed in the fatty liver of type 2 diabetic ob/ob mice. Herein, we investigated how PPARγ regulates the expression of the interferon alpha-inducible protein 27-like 2b (lfi27l2b) gene in the mouse liver. High expression of lfi27l2b was observed in the fatty liver of ob/ob mice, and the expression was further upregulated by PPARγ ligands; however, liver-specific Pparg knockout ameliorated this increase.

View Article and Find Full Text PDF

The stimulator of interferon genes (STING) pathway is a central target in cancer immunotherapy, but current STING agonist therapies lack precision control, leading to suboptimal therapeutic outcomes and systematic adverse effects. Herein, we engineered a dual-locked immuno-polymeric nanoplatform (IPN) with precise spatiotemporal control over the release of STING agonists to enhance cancer immunotherapy. This platform, constructed from biocompatible poly(β-amino esters) (PBAE), incorporates the STING agonist (MSA-2) covalently linked via ester bonds, which is co-assembled with a sonosensitizer.

View Article and Find Full Text PDF

Astragaloside IV regulates the IRF7/NLRP3 axis to inhibit neutrophil extracellular trap formation and alleviate coxsackievirus B3-induced myocarditis.

Biochem Biophys Res Commun

August 2025

Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China. Electronic address:

Background: Coxsackievirus B3 (CVB3) infection is a common cause of myocarditis, and the resulting inflammatory response and cellular damage can lead to severe cardiac dysfunction. Astragaloside IV (AS-IV), a natural compound with anti-inflammatory and antiviral properties, has shown potential therapeutic value in various inflammatory and immune-related diseases. Our study aims to explore the potential effects and underlying mechanisms of AS-IV in CVB3-induced viral myocarditis (VMC).

View Article and Find Full Text PDF

Chronic pain (CP) is a major health issue globally, affecting millions and resulting in a significant healthcare burden. Although amitriptyline is widely used to manage CP, its immunomodulatory effects during pain therapy, especially on T cell phenotypes, remain unclear. In this study, we explored how amitriptyline alters T cell phenotypes in CP patients.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuONPs) are increasingly used across various industrial applications, raising concerns about their potential toxicity and necessitating comprehensive safety evaluations. In this study, we first evaluated the respiratory toxicity of CuONP exposure in a mouse model of asthma. CuONP exposure alone exacerbated asthma symptoms, as evidenced by increased airway hyperresponsiveness, inflammatory cell infiltration, and elevated cytokine production with increasing thioredoxin-interacting protein (TXNIP) expression.

View Article and Find Full Text PDF