Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919695PMC
http://dx.doi.org/10.1038/s41380-024-02759-3DOI Listing

Publication Analysis

Top Keywords

clinical symptoms
12
neural signatures
8
neurotransmitters clinical
8
asd
8
classifier asd
8
asd classifier
8
classifier
6
generalizable transportable
4
transportable resting-state
4
resting-state neural
4

Similar Publications

Isolated lumbar vertebral infection caused by Coxiella burnetii: A case report and literature review.

Diagn Microbiol Infect Dis

September 2025

Department of Infectious Diseases, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China. Electronic address:

This study describes the clinical characteristics and treatment of vertebral infection caused by Coxiella burnetii through a case report and literature review. We present a 60-year-old male with isolated lumbar vertebral infection. A comprehensive literature review identified 17 cases, with 82.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF

An ultrasensitive biosensor for H1N1 virus coupled with 3D spherical DNA nanostructure and CRISPR-Cas12a.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:

To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.

View Article and Find Full Text PDF

Background: Unsupervised cognitive assessments are becoming commonly used in studies of aging and neurodegenerative diseases. As assessments are completed in everyday environments and without a proctor, there are concerns about how common distractions may impact performance and whether these distractions may differentially impact those experiencing the earliest symptoms of dementia.

Objective: We examined the impact of self-reported interruptions, testing location, and social context during testing on remote cognitive assessments in older adults.

View Article and Find Full Text PDF