98%
921
2 minutes
20
Under the premise of guaranteeing the stability of the gas storage reservoir, reducing the thickness of the salt layer on the top plate of the gas storage reservoir can improve the utilization rate of the salt layer in the construction section and increase the vertical height of the gas storage reservoir cavity, creating a larger gas storage space. The mechanical planar model of the casing-cement sheath-surrounding rock in the top plate of the salt cavern gas storage reservoir yields the elastic-plastic theoretical solution for the stress and deformation of the well wall surrounding rock. Based on this, a three-dimensional mechanical numerical model of the top plate is constructed to compare the effects of various top plate thicknesses on the surrounding rocks of the gas storage reservoir and to analyze the stress and deformation behavior of the wall surrounding the rock of the top plate of the reservoir in the cementing section and bare wells under the long-term injection and extraction cycle. The results indicate that reducing the thickness of the roof salt layer primarily affects vertical displacement, radial displacement, equivalent strain, and principal stress changes in the cement sheath and surrounding rock. All other roof parameters, except for equivalent strain, show an increasing trend. Reducing the salt layer thickness in the cementing section has the least impact on the gas storage roof's stability. In contrast, reducing the salt layer thickness in the cementing section and bare wells has a moderate impact, while reducing the thickness solely in the bare wells is the most detrimental. These findings provide valuable insights for optimizing the roof thickness of gas storage facilities and enhancing the utilization of the limited salt layer in the reservoir section.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438982 | PMC |
http://dx.doi.org/10.1038/s41598-024-73067-7 | DOI Listing |
Int J Biol Macromol
September 2025
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
Efficient water-absorbing and water-holding materials have shown notable promise in various applications, including hygiene products, agriculture, and drug delivery systems. Opposed to traditional absorbents prepared using synthetic polymers, bio-based, environmentally friendly efficient absorbents have attracted more attention from both academia and the industry. Herein, the aerogel absorbents from functional sodium carboxymethyl cellulose (CMCNa), citric acid (CA) crosslinker, and cellulose nanofibers (CNF) have been developed via freeze-drying and cross-linking process.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. Electronic address:
This study investigates high-light-tolerant Nannochloropsis oceanica Rose Bengal mutants (RB2 and RB113) for bioremediation of shrimp aquaculture wastewater (SWW) under increased temperature and light, simulating future climate change. Cultivations were performed under 250 μmol photons m·s with flue gas CO₂ supply. At 18 °C, RB mutants and wild-type (WT) strain showed similar growth.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Swedish University of Agricultural Sciences, Department of Energy and Technology, Lennart Hjelms väg 9, Uppsala, Sweden.
The forest sector's climate change mitigation depends on forest carbon sequestration, storing carbon in wood products, and avoidance of fossil greenhouse gas emissions by replacing more emission intensive products or energy sources, i.e., the substitution effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, China.. Electronic address:
Hard carbon has emerged as the most widely studied and commercialized anode material for sodium-ion batteries (SIBs). However, improving the charge transfer kinetics within the plateau potential range of the hard carbon anode is crucial for the development of fast-charging SIBs. In this study, we prepared a novel composite material, ZAPA-1300, by uniformly mixing starch, asphalt, and zinc oxide (ZnO), followed by a two-step treatment process.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.
View Article and Find Full Text PDF