98%
921
2 minutes
20
Background: Recent studies suggest strong correlations between Biologically Effective Doses (BED) and single fraction stereotactic radiosurgery treatment outcomes, as demonstrated for vestibular schwannomas (VS), arterio-venous malformations and pituitary adenomas. The BEDs calculated in these studies consider an uniform dose delivery where the spatio-temporal aspects of dose delivery were neglected.
Purpose: The aim of the study is to quantify the discrepancies between the BED values calculated with a simplified model of uniform dose delivery against the more complex model that incorporates the temporo-spatial incrementation of dose delivery and the bi-exponential effect of the sub-lethal damage repair.
Methods: A software tool that computes the BED distributions based on individual isocenter dose matrices extracted from the GammaPlan (Elekta) treatment planning was developed. Two cohorts 5 VS and 5 jugular foramen schwannoma cases of various tumor volumes and isocenter number were utilized to benchmark the method. Their BEDs covering 98% of tumor volumes were compared against those determined with the uniform delivery model.
Results: The BEDs covering 98% of the tumor volumes as calculated with both models show an approximately linear dependency with the treatment time. For all studied cases, the uniform delivery model overestimates the BEDs calculated with the full spatio-temporal delivery model. This discrepancy seems to accentuate with the tumor volume and treatment complexity.
Conclusions: Despite their resemblance, the BED distributions provide a plethora of BED measures more suitable to characterize clinical outcomes than the unique peripheral BED value calculated with the simplified model of uniform dose delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2024.104820 | DOI Listing |
J Vis Exp
August 2025
Department of Nutritional Sciences, University of Wisconsin-Madison;
The retinol isotope dilution (RID) test is the most sensitive method to assess vitamin A status by estimating total liver reserves, considered the reference standard. For gas chromatography-combustion-isotope ratio mass spectrometry detection, C is added to the retinol moiety. The synthetic procedure for C-retinyl acetate begins with the naturally occurring β-ionone.
View Article and Find Full Text PDFJ Viral Hepat
October 2025
Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
Chronic liver disease (CLD) is a leading cause of global morbidity and mortality, necessitating effective preventive strategies. Growing evidence is linking coffee consumption with reduced risk of disease progression in various CLDs, including metabolic dysfunction associated steatotic liver disease (MASLD), alcoholic liver disease, hepatitis B and C, autoimmune hepatitis, and a reduction in the risk of hepatocellular carcinoma development. Coffee, a globally consumed beverage, contains bioactive compounds like caffeine, chlorogenic acids, diterpenes, and polyphenols, which may offer hepatoprotective benefits through anti-inflammatory, antioxidant, and metabolic regulatory effects.
View Article and Find Full Text PDFCureus
August 2025
College of Health Sciences, Universidad San Francisco de Quito, Quito, ECU.
Lattice radiotherapy (LRT) is a type of spatially fractionated radiation therapy (SFRT) that enables the delivery of ablative doses to specific internal regions of large tumoral lesions, while surrounding tissues and nearby critical structures receive significantly lower exposure. This technique relies on a spatial distribution strategy that allows dose levels of radiation to be applied within the tumor in a single session or, alternatively, over the course of five sessions. Over time, LRT has gained attention as a promising method for managing large tumors, especially in cases where conventional treatments may pose higher risks or be less effective, offering the benefit of reduced side effects.
View Article and Find Full Text PDFFront Pharmacol
August 2025
AIMS BioScience, Co., Ltd., Seoul, Republic of Korea.
Introduction: Irinotecan (CPT-11), a topoisomerase I inhibitor, serves as a prodrug for SN-38, its active metabolite with significantly higher cytotoxic potency. Despite its clinical efficacy, irinotecan's therapeutic potential is limited by low fraction of conversion to SN-38, inefficient tumor targeting, and dose-limiting toxicities such as diarrhea and neutropenia. Nanoparticle-based formulations, such as SNB-101, offer a promising solution by encapsulating irinotecan and SN-38, enhancing solubility, improving drug delivery efficiency, and reducing systemic toxicity through tumor-specific accumulation via the enhanced permeability and retention (EPR) effect.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Anthracycline-based chemotherapy is a highly effective treatment for numerous cancers, yet its clinical use is severely limited by cumulative, dose-dependent cardiotoxicity. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, play a pivotal role in the pathophysiology of cardiovascular disease, but their specific functions in anthracycline-induced cardiotoxicity (AIC) require systematic elucidation.
Purpose: This review aims to systematically summarize current research on the key miRNAs, their molecular targets, and associated signaling pathways that regulate AIC, while also exploring their potential as biomarkers for early diagnosis and as therapeutic targets for intervention.