98%
921
2 minutes
20
The emergence of novel pathogens, exemplified recently by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the need for rapidly deployable and adaptable diagnostic assays to assess their impact on human health and guide public health responses in future pandemics. In this study, we developed an automated multiplex microscopy assay coupled with machine learning-based analysis for antibody detection. To achieve multiplexing and simultaneous detection of multiple viral antigens, we devised a barcoding strategy utilizing a panel of HeLa-based cell lines. Each cell line expressed a distinct viral antigen, along with a fluorescent protein exhibiting a unique subcellular localization pattern for cell classification. Our robust, cell segmentation and classification algorithm, combined with automated image acquisition, ensured compatibility with a high-throughput approach. As a proof of concept, we successfully applied this approach for quantitation of immunoreactivity against different variants of SARS-CoV-2 spike and nucleocapsid proteins in sera of patients or vaccinees, as well as for the study of selective reactivity of monoclonal antibodies. Importantly, our system can be rapidly adapted to accommodate other SARS-CoV-2 variants as well as any antigen of a newly emerging pathogen, thereby representing an important resource in the context of pandemic preparedness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437451 | PMC |
http://dx.doi.org/10.3390/v16091473 | DOI Listing |
Heart Rhythm
September 2025
Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain; CIBERCV, Madrid, España. Electronic address:
Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.
Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.
ACS Sens
September 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation 119991.
Fluorogen-activating proteins are powerful molecular tools for microscopy, including functional imaging. These proteins serve as an alternative to GFP-like proteins, as they do not require oxygen for chromophore maturation. However, the restricted selectivity of proteins to chromophores, combined with the limited number of spectral channels of conventional fluorescent microscopes, hinders the development of multicolor synthetic dyes.
View Article and Find Full Text PDFArXiv
August 2025
Department of Genetics, Yale University, New Haven, CT 06510, USA.
A key output of the NIH-Common Fund 4D Nucleome (4DN) project is the open publication of datasets related to the structure of the human cell nucleus and the genome. Recent years have seen a rapid expansion of multiplexed Fluorescence In Situ Hybridization (FISH) or FISH-omics methods, which quantify the spatial organization of chromatin in single cells, sometimes together with RNA and protein measurements, and provide an expanded understanding of how 3D higher-order chromosome structure relates to transcriptional activity and cell development in both health and disease. Despite this progress, results from Chromatin Tracing FISH-omics experiments are difficult to share, reuse, and subject to third-party downstream analysis due to the lack of standard specifications for data exchange.
View Article and Find Full Text PDFWe report an imaging package to democratize all-in-one bioluminescence and fluorescence microscopy. The platform comprises three tools: PhasorViewer, a visualization suite to design experiments and identify optimal probe combinations; PhasorScope, an open-source, cost-effective microscopy framework to upgrade conventional microscopes; and PhasorAnalysis, a dedicated, user-friendly analysis pipeline to quantify phasor imaging data. We demonstrate the utility of the platform for multiplexed, simultaneous fluorescence and bioluminescence imaging with readily accessible optical reporters.
View Article and Find Full Text PDFCurr Opin HIV AIDS
August 2025
Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York.
Purpose Of Review: Persistent HIV reservoirs within lymphoid tissues represent a major obstacle to achieving an HIV cure. This review examines current and emerging assays used to visualize, characterize, and quantify these reservoirs. Recent advancements in imaging, sequencing, and single-cell technologies are providing unprecedented detail about the composition, landscape and behavior of HIV reservoirs.
View Article and Find Full Text PDF