98%
921
2 minutes
20
Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system specifically designed for dynamic environments. Initially, the detection thread employs YOLACT (You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene. Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an optical flow consistency method is implemented to assess the dynamic nature of rigid object mask regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense mapping thread is incorporated to filter out non-rigid objects using semantic information, track the point clouds of rigid objects, reconstruct the static background, and store the resulting map in an octree format. Experimental results demonstrate that the proposed method surpasses current mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435655 | PMC |
http://dx.doi.org/10.3390/s24185929 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States.
Purpose: To assess macular choriocapillaris (CC) metrics in healthy volunteers (HVs) without ocular disease and demonstrate CC variations in patients with inherited retinal dystrophies (IRDs) using adaptive optics optical coherence tomography angiography (AO-OCTA).
Methods: Twenty-one HVs and three IRD patients were imaged. Macular variation in 20 HVs in CC metrics (CC density, CC diameter, CC tortuosity, void diameter, void area, lobule count, lobule area, and RPE-CC distance) were assessed by imaging a 28° strip of overlapping AO-OCTA volumes (3° × 3°) from the optic nerve head to the temporal macula.
Am J Clin Pathol
September 2025
Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.
View Article and Find Full Text PDFVirology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Human beings have the ability to continuously analyze a video and immediately extract the motion components. We want to adopt this paradigm to provide a coherent and stable motion segmentation over the video sequence. In this perspective, we propose a novel long-term spatio-temporal model operating in a totally unsupervised way.
View Article and Find Full Text PDFMicrosc Res Tech
September 2025
Department of Physics, West Tehran Branch, Islamic Azad University, Tehran, Iran.
Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.
View Article and Find Full Text PDF