Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a single-cellular fungus that obligately infects the midgut epithelial cells of adult honeybees, causing bee microsporidiosis and jeopardizing bee health and production. This work aims to construct the full-length transcriptome of and conduct a relevant investigation using PacBio single-molecule real-time (SMRT) sequencing technology. Following PacBio SMRT sequencing, 41,950 circular consensus (CCS) were generated, and 25,068 full-length non-chimeric (FLNC) reads were then detected. After polishing, 4387 high-quality, full-length transcripts were gained. There are 778, 2083, 1202, 1559, 1457, 1232, 1702, and 3896 full-length transcripts that could be annotated to COG, GO, KEGG, KOG, Pfam, Swiss-Prot, eggNOG, and Nr databases, respectively. Additionally, 11 alternative splicing (AS) events occurred in 6 genes were identified, including 1 alternative 5' splice-site and 10 intron retention. The structures of 225 annotated genes in the reference genome were optimized, of which 29 genes were extended at both 5' UTR and 3' UTR, while 90 and 106 genes were, respectively, extended at the 5' UTR as well as 3' UTR. Furthermore, a total of 29 high-confidence lncRNAs were obtained, including 12 sense-lncRNAs, 10 lincRNAs, and 7 antisense-lncRNAs. Taken together, the high-quality, full-length transcriptome of was constructed and annotated, the structures of annotated genes in the reference genome were improved, and abundant new genes, transcripts, and lncRNAs were discovered. Findings from this current work offer a valuable resource and a crucial foundation for molecular and omics research on .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431495PMC
http://dx.doi.org/10.3390/genes15091111DOI Listing

Publication Analysis

Top Keywords

full-length transcriptome
12
smrt sequencing
8
high-quality full-length
8
full-length transcripts
8
annotated genes
8
genes reference
8
reference genome
8
genes extended
8
extended utr
8
full-length
6

Similar Publications

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

LlLRP1, an SHI/SRS transcription factor, mediates bulbil formation in Lilium lancifolium via regulation by LlWOX11 and response to NaCl stress.

Int J Biol Macromol

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China. Electronic address: mingju

Bulbil formation in Lilium lancifolium represents a pivotal vegetative reproduction strategy, yet the transcriptional regulatory network governing this process remains largely uncharacterized. Here, we identify LlLRP1 by full-length cloning, sequence analysis and subcellular localization, an SHI/SRS family transcription factor, as a key mediator of bulbil morphogenesis. Transcriptomic profiling revealed that LlLRP1 is a downstream target of LlWOX11, with its promoter harboring conserved binding motifs (AAAG, AGTA) validated by yeast one-hybrid, dual-luciferase reporter, and electrophoretic mobility shift assays.

View Article and Find Full Text PDF

Introduction: Glucose transporter (GLUT) research in parasitic nematodes focuses on identifying and characterizing developmentally regulated isoforms, elucidating their regulatory and structural properties, and evaluating their potential as drug targets. While glucose transport mechanisms have been well characterized in the free-living nematode , data on parasitic species remain limited. s.

View Article and Find Full Text PDF

Scnanoseq: an nf-core pipeline for oxford nanopore single-cell RNA-sequencing.

Bioinformatics

September 2025

Institutional Research Core Program-Biological Data Science Core, University of Alabama at Birmingham, Birmingham, AL United States.

Motivation: Recent advancements in long-read single-cell RNA sequencing (scRNA-seq) have facilitated the quantification of full-length transcripts and isoforms at the single-cell level. Historically, long-read data would need to be complemented with short-read single-cell data in order to overcome the higher sequencing errors to correctly identify cellular barcodes and unique molecular identifiers. Improvements in Oxford Nanopore sequencing, and development of novel computational methods have removed this requirement.

View Article and Find Full Text PDF

Polyadenylation is a dynamic process that is important in cellular physiology, which has implications in messenger RNA decay rates, translation efficiency, and isoform-specific regulation. Oxford Nanopore Technologies direct RNA sequencing provides a strategy for sequencing the full-length RNA molecule and analysis of the transcriptome. Several tools are currently available for poly(A) tail length estimation, including well-established methods like tailfindr and nanopolish, as well as more recent deep learning models like Dorado.

View Article and Find Full Text PDF