98%
921
2 minutes
20
The encapsulation of fish oil by monoaxial electrospraying using kafirin or zein proteins as hydrophobic wall materials was investigated. Kafirin resulted in spherical fish oil-loaded nanocapsules (>50% of capsules below 1 µm), whereas zein led to fish oil-loaded nanocapsules with non-spherical morphology (>80% of capsules below 1 µm). Both hydrophobic encapsulating materials interacted with fish oil, successfully entrapping the oil within the protein matrix as indicated by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy results. FTIR also suggested hydrogen bonding between fish oil and the proteins. Trapped radicals in the encapsulation matrix that were detected by electron paramagnetic resonance (EPR), indicated oxidation during electrospraying and storage. Results from isothermal (140 °C) differential scanning calorimetry (DSC) denoted that the encapsulation of fish oil by electrospraying using both kafirin or zein as wall materials protected fish oil from oxidation. In particular, the zein-based nanocapsules were 3.3 times more oxidatively stable than the kafirin-based nanocapsules, which correlates with the higher oil encapsulation efficiency found for zein-based capsules. Thus, this study shows that kafirin might be considered a hydrophobic wall material for the encapsulation of fish oil by electrospraying, although it prevented lipid oxidation to a lower extent when compared to zein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428463 | PMC |
http://dx.doi.org/10.3390/antiox13091145 | DOI Listing |
Front Vet Sci
August 2025
Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye.
Application of anesthetic chemicals in aquaculture is important to minimize stress under normal operations such as handling, transport, and artificial breeding. In the past decade, the preference for natural anesthetics over synthetic ones has increased due to welfare issues regarding fish welfare and food safety. This study investigates the anesthetic efficacy of nutmeg oil () in three freshwater fish species- (Common carp), (Danube sturgeon), and (Rainbow trout)-by modeling behavioral (Induction and recovery times) and hematological responses using artificial neural networks (ANNs).
View Article and Find Full Text PDFInflammopharmacology
September 2025
Department of Surgery, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
Objective: This study evaluated the effects and mechanisms of antioxidant and anti-inflammatory oils with a high omega-9:omega-6 ratio and a low omega-6:omega-3 ratio on post-extraction healing in rats.
Materials And Methods: A total of 128 Wistar rats were divided into four groups: Sham, Saline, Isolipidic, and Anti-inflammatory/Antioxidant. The animals received one of the following treatments: (1) 0.
Vet Res Commun
September 2025
Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey.
This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Hill's Pet Nutrition, Topeka, KS, USA 66601.
Fish oil is a source of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) that confer several health benefits. To ensure continuity in the supply of n-3 fatty acids, alternative sources are being sought. Algal oil may serve as a promising alternative to fish oil for supplementing DHA in cat foods.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.
View Article and Find Full Text PDF