Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to predict arginine vasopressin deficiency (AVP-D) following transsphenoidal pituitary adenoma surgery using machine learning algorithms. We reviewed 452 cases from December 2013 to December 2023, analyzing clinical and imaging data. Key predictors of AVP-D included sex, tumor height, preoperative and postoperative changes in sellar diaphragm height and pituitary stalk length, preoperative ACTH levels, changes in ACTH levels, and preoperative cortisol levels. Six machine learning algorithms were tested: logistic regression (LR), support vector classification (SVC), random forest (RF), decision tree (DT), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). After cross-validation and parameter optimization, the random forest model demonstrated the highest performance, with an accuracy (ACC) of 0.882 and an AUC of 0.96. The decision tree model followed, achieving an accuracy of 0.843 and an AUC of 0.95. Other models showed lower performance: LR had an ACC of 0.522 and an AUC of 0.54; SVC had an ACC of 0.647 and an AUC of 0.67; KNN achieved an ACC of 0.64 and an AUC of 0.70; and XGBoost had an ACC of 0.794 and an AUC of 0.91. The study found that a shorter preoperative pituitary stalk length, significant intraoperative stretching, and lower preoperative ACTH and cortisol levels were associated with a higher likelihood of developing AVP-D post-surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436865PMC
http://dx.doi.org/10.1038/s41598-024-72486-wDOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning algorithms
12
arginine vasopressin
8
vasopressin deficiency
8
transsphenoidal pituitary
8
pituitary adenoma
8
pituitary stalk
8
stalk length
8
preoperative acth
8
acth levels
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF