98%
921
2 minutes
20
Evidences illustrate that cell senescence contributes to the development of pulmonary arterial hypertension. However, the molecular mechanisms remain unclear. Since there may be different senescence subtypes between PAH patients, consistent senescence-related genes (SRGs) were utilized for consistent clustering by unsupervised clustering methods. Senescence is inextricably linked to the immune system, and the immune cells in each cluster were estimated by ssGSEA. To further screen out more important SRGs, machine learning algorithms were used for identification and their diagnostic value was assessed by ROC curves. The expression of hub genes were verified in vivo and in vitro. Transcriptome analysis was used to assess the effects of silence of hub gene on different pathways. Three senescence molecular subtypes were identified by consensus clustering. Compared with cluster A and B, most immune cells and checkpoint genes were higher in cluster C. Thus, we identified senescence cluster C as the immune subtype. The ROC curves of IGF1, HOXB7, and YWHAZ were remarkable in both datasets. The expression of these genes was increased in vitro. Western blot and immunohistochemical analyses revealed that YWHAZ expression was also increased. Our transcriptome analysis showed autophagy-related genes were significantly elevated after silence of YWHAZ. Our research provided several prospective SRGs and molecular subtypes. Silence of YWHAZ may contribute to the clearance of senescent endothelial cells by activating autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437103 | PMC |
http://dx.doi.org/10.1038/s41598-024-72979-8 | DOI Listing |
Brief Bioinform
August 2025
School of Computer Science, Xi'an Polytechnic University, 710048, Xi'an, China.
Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering.
View Article and Find Full Text PDFUrologie
September 2025
Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.
Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).
View Article and Find Full Text PDFActa Parasitol
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.
Methods: The location of Ferric reductase in Blastocystis sp.
Background: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.
Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.
J Pathol
September 2025
Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR), and HER2, and remains one of the most aggressive and therapeutically challenging breast cancer subtypes, marked by early relapse, metastasis, and limited targeted treatment options. In a recent study published in The Journal of Pathology, Kuo et al provide compelling evidence that nicotine exposure, whether from tobacco smoke or e-cigarette vapor, drives TNBC progression by promoting stem-like and metastatic phenotypes. Integrating clinical datasets, patient tissues, cell lines, and in vivo models, the authors demonstrate that nicotine enhances tumor aggressiveness via coordinated upregulation of CHRNA9 and IGF1R.
View Article and Find Full Text PDF