Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of engineered steam exploded biochar on the phytoavailability of toxic elements in the shared- and nonshared-rhizosphere of vegetable-grass intercropping system have not been investigated yet. Therefore, we explored and elucidated the synergistic effect of pristine rape-straw biochar (BC), steam exploded BC (BCSE), KMnO-modified BCSE (BCSEMn), and hydroxyapatite-modified BCSE (BCSEHA) on the solubility, fractionation and phytoavailability of lead (Pb) in a vegetable-grass intercropping system. In a rhizosphere box, Brassica chinensis L. (pakchoi; PC, as a vegetable) and Pennisetum polystachion L. (mission grass; MG, as a Pb hyperaccumulator), were grown in the biochar treated soil with (non-shared rhizosphere) or without (shared rhizosphere) root separation. Addition of BCSEMn and BCSEHA, particularly BCSEMn, significantly improved plant growth, photosynthetic pigment levels, and positively influenced the gas exchange attributes by suppressing oxidative stress and boosting antioxidant enzymes activities. Both biochars altered a proportion of Pb in the acid soluble to the immobile fraction and thus significantly decreased its leachability (TCLP-Pb) and bioavailability (CaCl-extrcated Pb) by 32.7 %-33.9 % and 48.5 %-53.5 %, respectively, as compared to the control. Both biochars, particularly BCSEMn, reduced significantly the Pb content in shoots and roots of PC and MG with a significantly higher efficiency in the PC than in the MG; this was the case more in the shared than in the non-shared rhizosphere. These findings indicate the synergistic effect of BCSEMn and BCSEHA and intercropping for enhancing the grass phytostabilization capacity for Pb and reducing its uptake by edible plants in a vegetables-grass system, which could be used as a promising approach for the phytomanagement of Pb contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176531DOI Listing

Publication Analysis

Top Keywords

steam exploded
8
vegetable-grass intercropping
8
intercropping system
8
non-shared rhizosphere
8
bcsemn bcseha
8
rhizosphere
5
bcsemn
5
synergistic biochar
4
intercropping
4
biochar intercropping
4

Similar Publications

In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.

View Article and Find Full Text PDF

Combined effects of lignin removal and pore regulation on the properties of bamboo fiber molded materials for sustainable plastic alternatives.

Int J Biol Macromol

August 2025

Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:

The global plastic crisis has driven the search for sustainable alternatives, and plant-based fibers, such as bamboo fibers, have emerged as promising alternatives. In this study, the combined effects of lignin removal and pore regulation on the mechanical properties of steam-exploded blended bamboo fibers (BBF) and chemi-mechanically processed moso bamboo fibers (Phyllostachys pubescens, PPF) were investigated for their potential use as sustainable plastic alternatives. The results showed that the relative lignin content of PPF subjected to delignification treatment was 8.

View Article and Find Full Text PDF

Herein, a novel super-hygroscopic material, steam-exploded modified corn stalk pith (SE-CSP), was developed from corn stalk pith (CSP) via the steam explosion (SE) method, and its hygroscopic properties and mechanisms were evaluated. The results confirmed that SE effectively removed lignin and hemicellulose, disrupted the thin cell walls of natural CSP, and formed an aligned porous structure with capillary channels. SE changed the bonding distribution and surface morphology, and enhanced the crystallinity and thermal stability of CSP.

View Article and Find Full Text PDF

Robust Saccharomyces cerevisiae by rational metabolic engineering for effective ethanol production from undetoxified steam-exploded corn stover hydrolysate.

Bioresour Technol

September 2025

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China. Electronic address:

Lignocellulosic bioethanol production by S.cerevisiae is severely hampered by xylose assimilation and inhibitors. Aiming to solve these barriers, the xylose isomerase pathway was heterologously introduced into parental strain, followed by conducting the adaptive laboratory evolution.

View Article and Find Full Text PDF

The increasing environmental concerns regarding plastic waste, especially in agriculture, have driven the search for sustainable alternatives. Agricultural plastics, such as mulching films and greenhouse covers, are heavily reliant on petrochemical-derived materials, which persist in the environment and contribute to long-term pollution. This study explores the use of biodegradable biocomposites made from steam explosion-treated chicken feathers and various polymer matrices to address these issues.

View Article and Find Full Text PDF