Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) is a hazardous heavy metal that threatens human health through the consumption of contaminated rice. To mitigate Cd accumulation in rice grains, it is crucial to reduce Cd uptake. Nevertheless, the transcriptional mechanisms governing Cd uptake in rice remain largely unknown. This research identifies the transcription factor OsNAC5 in Oryza sativa as a positive regulator of the Cd transporter gene OsNRAMP1, thereby influencing Cd uptake. OsNAC5 is predominantly expressed in the roots, resides in the nucleus, and is upregulated by Cd-induced hydrogen peroxide (HO). Knocking out OsNAC5 results in lower Cd concentrations in both shoots and roots and heightens sensitivity to Cd. The expression of OsNRAMP1, enhanced by Cd stress, is dependent on OsNAC5. OsNAC5 binds to "CATGTG" motifs in the OsNRAMP1 promoter, activating its expression. The loss of OsNAC5 function leads to reduced Cd accumulation in rice grains. Our findings provide insights into the transcriptional regulation of Cd stress response in rice and propose biotechnological strategies to lower Cd uptake in crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117102DOI Listing

Publication Analysis

Top Keywords

accumulation rice
12
transcription factor
8
factor osnac5
8
rice grains
8
osnac5
7
rice
6
osnac5 regulates
4
regulates cadmium
4
cadmium accumulation
4
rice cadmium
4

Similar Publications

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF

Background: Peroxisomes are essential for the metabolism of very long-chain fatty acids (VLCFAs). Their biogenesis requires peroxins encoded by the PEX genes. While the significance of PEX14 has been established in the major rice pest the brown planthopper (Nilaparvata lugens), the role of PEX16 as a peroxisome biogenesis initiator remains uncharacterized in this pest.

View Article and Find Full Text PDF

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF