Left motor cortex contributes to auditory phonological discrimination.

Cereb Cortex

Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst St, North York, ON M6A 2E1, Canada.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evidence suggests that the articulatory motor system contributes to speech perception in a context-dependent manner. This study tested 2 hypotheses using magnetoencephalography: (i) the motor cortex is involved in phonological processing, and (ii) it aids in compensating for speech-in-noise challenges. A total of 32 young adults performed a phonological discrimination task under 3 noise conditions while their brain activity was recorded using magnetoencephalography. We observed simultaneous activation in the left ventral primary motor cortex and bilateral posterior-superior temporal gyrus when participants correctly identified pairs of syllables. This activation was significantly more pronounced for phonologically different than identical syllable pairs. Notably, phonological differences were resolved more quickly in the left ventral primary motor cortex than in the left posterior-superior temporal gyrus. Conversely, the noise level did not modulate the activity in frontal motor regions and the involvement of the left ventral primary motor cortex in phonological discrimination was comparable across all noise conditions. Our results show that the ventral primary motor cortex is crucial for phonological processing but not for compensation in challenging listening conditions. Simultaneous activation of left ventral primary motor cortex and bilateral posterior-superior temporal gyrus supports an interactive model of speech perception, where auditory and motor regions shape perception. The ventral primary motor cortex may be involved in a predictive coding mechanism that influences auditory-phonetic processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427950PMC
http://dx.doi.org/10.1093/cercor/bhae369DOI Listing

Publication Analysis

Top Keywords

motor cortex
32
ventral primary
24
primary motor
24
left ventral
16
phonological discrimination
12
posterior-superior temporal
12
temporal gyrus
12
motor
10
cortex
8
speech perception
8

Similar Publications

Hepatic encephalopathy (HE) is a neurological condition that occurs as a complication of liver dysfunction that involves sensorimotor symptoms in addition to cognitive and behavioral changes, particularly in cases of severe liver disease or cirrhosis. Previous studies have reported spatially distributed structural and functional abnormalities related to HE, but the exact relationship between the structural and functional alterations with respect to disease progression remains unclear. In this study, we performed surface-based cortical thickness comparisons and functional connectivity (FC) analyses between three cross-sectional groups: healthy controls (HC, = 51), patients with minimal hepatic encephalopathy (MHE, = 50), patients with overt hepatic encephalopathy (OHE, = 51).

View Article and Find Full Text PDF

Diverse and distributed haemodynamic effects of theta burst stimulation in the prefrontal cortex.

Neuroimage Rep

September 2025

School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT, UK.

Background: Theta Burst Stimulation (TBS) is a form of non-invasive brain stimulation that can induce neuroplastic changes in the underlying intracortical areas. It has significant potential in clinical and research settings for modulating cognitive and motor performance. Little is known about how TBS affects oxygenations levels within and across brain hemispheres during stimulation of the Dorsolateral Prefrontal Cortex (DLPFC).

View Article and Find Full Text PDF

Anatomical pathways and functional implications of the rodent auditory system-basal ganglia interconnectivity.

Front Behav Neurosci

August 2025

Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.

View Article and Find Full Text PDF

Perinatal stroke is a vascular injury occurring early in life, often resulting in motor deficits (hemiplegic cerebral palsy/HCP). Comorbidities may also include poor neuropsychological outcomes, such as deficits in memory. Previous studies have used resting state functional MRI (fMRI) to demonstrate that functional connectivity (FC) within hippocampal circuits is associated with memory function in typically developing controls (TDC) and in adults after stroke, but this is unexplored in perinatal stroke.

View Article and Find Full Text PDF

Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.

View Article and Find Full Text PDF