98%
921
2 minutes
20
Biofilm formation by is a major challenge in clinical settings due to its role in persistent infections. The AgrA protein, a key regulator in biofilm development, is a promising target for therapeutic intervention. This study investigates the antibiofilm potential of halogenated phenazine compounds by targeting AgrA and explores their molecular interactions to provide insights for drug development. We employed molecular docking, molecular dynamics simulations, and computational mutagenesis to evaluate the binding of halogenated phenazine compounds (C1 to C7, HP, and HP-14) to AgrA. Binding free energy analysis was performed to assess the affinity of these compounds for the AgrA-DNA complex. Additionally, the impact of these compounds on AgrA's structural conformation and salt bridge interactions was examined. The binding-free energy analysis revealed that all compounds enhance binding affinity compared to the Apo form of AgrA, which has a G of -80.75 kcal/mol. The strongest binding affinities were observed with compounds C7 (-113.84 kcal/mol), HP-14 (-115.23 kcal/mol), and HP (-112.28 kcal/mol), highlighting their effectiveness. Molecular dynamics simulations demonstrated that these compounds bind at the hydrophobic cleft of AgrA, disrupting essential salt bridge interactions between His174-Glu163 and His174-Glu226. This disruption led to structural conformational changes and reduced DNA binding affinity, aligning with experimental findings on biofilm inhibition. The halogenated phenazine compounds effectively inhibit biofilm formation by targeting AgrA, disrupting its DNA-binding function. The study supports the potential of these compounds as antibiofilm agents and provides a foundation for rational drug design targeting the AgrA-DNA interaction. Future research should focus on further optimizing these lead compounds and exploring additional active sites on AgrA to develop novel treatments for biofilm-associated infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424843 | PMC |
http://dx.doi.org/10.1155/2024/8843954 | DOI Listing |
Org Lett
September 2025
Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
Halogenated phenazines hold promise as antimicrobial and antibiofilm agents, yet are mainly accessed via chemical synthesis. Herein, we report PezW, a novel single-component flavin-dependent halogenase (FDH) that halogenates phenazine scaffolds, notably enabling enzymatic synthesis of bioactive 2-bromo-1-hydroxyphenazine () and 2,4-bromo-1-hydroxyphenazine (). Structural modeling and mutagenesis revealed key residues critical for substrate binding and catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
Halogenation emerges as a key strategy to enhance the performance of organic solar cells (OSCs) by tuning molecular packing, energy levels, and charge dynamics. Here, we report three new benzo[a]phenazine-core small-molecule acceptors, namely NA5, NA6, and NA7, and systematically evaluate their photovoltaic properties in o-xylene-processed binary and ternary OSCs. Halogenation significantly strengthens intermolecular interactions, improves charge carrier mobility, and facilitates exciton dissociation, leading to a remarkable increase in binary device efficiencies from ∼2% (NA5) to over 17% (NA6, NA7).
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.
Halogenated phenazine (HP) compounds have shown promise as antimicrobial agents, particularly against biofilm-associated Gram-positive pathogens. Among these compounds, HP-29 demonstrates potent activity against methicillin-resistant by inducing rapid iron starvation. As maintenance of trace metals homeostasis is critical for the survival of , this study investigated the antimicrobial efficacy of HP-29 and the impact of metal supplementation on this major oral and occasional systemic pathogen.
View Article and Find Full Text PDFMacromol Rapid Commun
July 2025
Department of Physics and Center for Material Science and Nano-electroncis, The LNM Institute of Information Technology, Jaipur, Rajasthan, India.
The ternary active layer approach has emerged as a promising approach to further boost the power conversion efficiency of organic solar cells. In order to absorb photons from the solar radiation below 600 nm, we have designed and synthesized a new wide bandgap polymer P(FCzNDT-DFTPhz) consisting of strong 5,6-bis(6-fluoro-9H-carbazol-3-yl)naphtho[2,1-b:3,4-b']dithiophene and di-fluoro-dithieno [3,2-a:2',3'-c]phenazine donor and acceptor units, respectively, its optical and electrochemical properties were investigated. The P(FCzNDT-DFTPhz) exhibits strong absorption spectrumbelow 650 nm along with deeper HOMO energy level (-5.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
May 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan.
Pseudomonas species are recognized for producing a diverse array of microbial metabolites with significant potential across various fields. Pyrrolnitrin (PRN), a halogenated metabolite based on phenylpyrrole, exhibits potent antibiotic properties. This research aimed to examine the influence of pyrrolnitrin on the antagonistic properties of Pseudomonas chlororaphis strains PB-St2, FS2, and RP4.
View Article and Find Full Text PDF