Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: Following subarachnoid hemorrhage (SAH), excessive activation of oxidative stress and cell apoptosis plays a critical role in early brain injury (EBI). Peroxiredoxin-5 (Prdx5), predominantly expressed in neuronal mitochondria, acts as an antioxidant. However, the role of Prdx5 in EBI after SAH remains unclear. This study aims to elucidate the antioxidative stress and anti-apoptotic effects of Prdx5 in rats following SAH.

Methods: In this study, an SAH model was established in Sprague-Dawley rats using endovascular perforation. Recombinant Prdx5 (rPrdx5) was administered intranasally to upregulate Prdx5 expression after SAH in rats. Prdx5 small interfering RNA (Prdx5 siRNA) was administered prior to SAH modelling. The neuroprotective effects of Prdx5 were validated through SAH grading, brain water content, blood-brain barrier permeability, neurobehavioral tests, immunofluorescence, TUNEL staining, and Western blotting.

Results: The expression levels of endogenous Prdx5 significantly decreased after SAH. Treatment with rPrdx5 improved both short-term and long-term behaviour in rats, reduced brain water content and blood-brain barrier permeability, and exhibited anti-oxidative stress and anti-apoptotic effects. Measurements of oxidative stress-related indicators, including MDA, SOD, GSH-Px and GSH/GSSG, confirmed that Prdx5 can alleviate oxidative stress in rats after SAH. Western blot analysis showed that rPrdx5 significantly increased the expression of Bcl-XL and Bcl-2 and reduced the expression of Bax and Cleaved Caspase-3, thereby exerting anti-apoptotic effects. Additionally, Prdx5 siRNA reversed the neuroprotective effects of rPrdx5, exacerbated neuronal damage and blood-brain barrier permeability, and increased levels of oxidative stress and apoptosis.

Conclusion: In conclusion, our study demonstrated that specifically upregulating the expression of Prdx5 can reduce oxidative stress and apoptosis in rats after SAH, while also improving both short-term and long-term neurological impairments. Prdx5 is primarily expressed in the mitochondria of neuronal cells and is a crucial target for reducing ROS after SAH. rPrdx5 treatment may offer a promising therapeutic approach for clinical SAH patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2024.111087DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
prdx5
13
anti-apoptotic effects
12
blood-brain barrier
12
barrier permeability
12
sah
11
early brain
8
brain injury
8
subarachnoid hemorrhage
8
prdx5 expressed
8

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF