98%
921
2 minutes
20
Barocaloric materials hold great promise for next-generation solid-state cooling devices because of their green and efficient cooling performance. The insights into low-pressure-driven barocaloric materials are expected to pave the way for the widespread application of barocaloric refrigeration technology. Here, we reveal the low-pressure-driven large barocaloric effect (BCE) modulated by geometrical frustrations in MnPt. The highest sensitivity to pressure of MnPt in metal BCE materials results in an excellent temperature-change strength of 9.77 K 100 MPa. Neutron powder diffraction and first-principles calculations point out the dual effect of geometrical frustration on modulating the unusual BCE, which not only induces giant volume expansion by inspiring strong spin fluctuation and magnetic moment but also enhances the sensitivity of magnetic phase transition. The model of the dual effect of geometrical frustration in magnets with geometrical frustration is established, which will promote the research progress of barocaloric refrigeration devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c07342 | DOI Listing |
Phys Rev Lett
August 2025
Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
Quantum low-density parity-check (QLDPC) codes offer a promising path to low-overhead fault-tolerant quantum computation but lack systematic strategies for exploration. In this Letter, we establish a topological framework for studying the bivariate-bicycle codes, a prominent class of QLDPC codes tailored for real-world quantum hardware. Our framework enables the investigation of these codes through universal properties of topological orders.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.
Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states.
View Article and Find Full Text PDFSoft Matter
September 2025
School of Physics, UNSW, Sydney, NSW 2052, Australia.
Liquid crystals formed of bent-core molecules are exotic materials that exhibit the twist-bend nematic phase. This arises when an energetic preference for nonzero local bend distortion is accommodated twist in the texture, resulting in properties synonymous with both smectics and cholesterics. Here we describe how the frustration inherent to the twist-bend phase can be exacerbated by confinement and boundary anchoring.
View Article and Find Full Text PDFSmall Methods
August 2025
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China.
The packing frustration approach has emerged as promising strategies for porosity fabrication by introducing geometric or energetic constrains among the structural units. This perspective summarizes the recent progress in the design of frustrated packing structures in nanoparticle, polymer, and polymer nanocomposite systems for the controlled formation of microporosity. The presence of size disparity and shape anisotropy among structural units, coupled with the interaction between structural units, can lead to the phenomenon of packing frustration.
View Article and Find Full Text PDFNat Commun
August 2025
School of Physics, UNSW, Sydney, NSW, Australia.
A leading paradigm for understanding the large-scale behavior of tissues is via generalizations of liquid crystal physics; much like liquid crystals, tissues combine fluid-like, viscoelastic behaviors with local orientational order, such as nematic symmetry. Whilst aspects of quantitative agreement have been achieved for flat monolayers, the most striking features of tissue morphogenesis-including symmetry breaking, folding and invagination-concern surfaces with complex curved geometries in three dimensions. As yet, however, characterizing such behaviors has been frustrated due to the absence of proper image analysis methods; current state-of-the-art methods almost exclusively rely on two-dimensional intensity projections of multiple image planes, which superimpose data and lose geometric information that can be crucial.
View Article and Find Full Text PDF