98%
921
2 minutes
20
Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684083 | PMC |
http://dx.doi.org/10.1093/brain/awae224 | DOI Listing |
Res Sq
August 2025
Department of Biology, University of Miami, Coral Gables, Florida 33146, USA.
Taxanes are frontline chemotherapeutics that stabilize microtubules, induce mitotic arrest, and drive tumor remission. However, their off-target effects in healthy tissues, most notably cutaneous axon degeneration underlying chemotherapy-induced peripheral neuropathy (CIPN), remain poorly understood. Here, we show that paclitaxel induces microtubule fasciculation in epidermal keratinocytes through the mitotic kinesin Eg5, thereby initiating CIPN.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Medicine.
A20, encoded by the TNFAIP3 gene, is a protein linked to Crohn's disease and celiac disease in humans. We now find that mice expressing point mutations in A20's M1-ubiquitin-binding zinc finger 7 (ZF7) motif spontaneously develop proximal enteritis that requires both luminal microbes and T cells. Cellular and transcriptomic profiling reveals expansion of Th17 cells and exuberant expression of IL-17A and IL-22 in intestinal lamina propria of A20ZF7 mice.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Lamina-associated domains (LADs) are megabase-sized genomic regions that interact with the nuclear lamina (NL). It is not yet understood how their interactions with the NL are encoded in their DNA. Here we designed an efficient LAD 'scrambling' approach, based on transposon-mediated local hopping of loxP recombination sites, to generate series of large deletions and inversions that span LADs and flanking sequences.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico.
The functional diversity of β-dystroglycan is attributable to its dual distribution, the plasma membrane, and the nucleus. In the plasma membrane, β-DG is a component of the dystrophin-associated protein complex. In the nucleus, β-DG assembles with the nuclear lamina and emerin.
View Article and Find Full Text PDFNat Commun
August 2025
Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
Chromatin-lamina interactions regulate gene activity by forming lamina-associated domains (LADs), which contribute to cellular identity through gene repression. However, the strength of these interactions and their responsiveness to environmental cues remain unclear. Here, we develop a theoretical framework to predict LAD morphology in human mesenchymal stem cells (MSCs), whose differentiation potential depends on the stiffness of the microenvironment.
View Article and Find Full Text PDF