A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling the Potential Dependence of Active Structures and Reaction Mechanism of Ni-based MOFs Electrocatalysts for Alkaline OER. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nickel-based metal-organic frameworks (MOFs) with flexible structure units provide a broad platform for designing highly efficient electrocatalysts, especially for alkaline oxygen evolution reaction (OER). However, the stability of MOFs under harsh and dynamic reaction conditions poses significant challenges, resulting in ambiguous structure-activity relationships in MOFs-based OER research. Herein, Ni-benzenedicarboxylic acid-based MOF (NiBDC) is selected as prototypical catalyst to elucidate  its real active sites for OER and reaction pathway under different reaction states. Electrochemical measurements combined with X-ray absorption spectroscopy (XAS) and Raman spectroscopy reveal that the complete reconstruction of NiBDC to β-NiOOH in the chronoamperometry activation process is responsible for significantly increased OER performance. In situ XAS and Raman results further demonstrate the electro-oxidation of β-NiOOH into γ-NiOOH at high-potential state (above 1.6 V vs RHE). Furthermore, the collective evidences from key reaction intermediates and isotope-labeled products definitely unravel the potential dependence of OER mechanism: OER process at low-potential state proceeds mainly through the lattice oxygen-mediated mechanism, while adsorbate evolution mechanism emerges as the predominant pathway at high-potential state. Interestingly, the dynamically changing OER mechanism can not only reduce the required overpotential at the low-potential state but also improve the electrochemical stability of catalysts at high-potential state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407328DOI Listing

Publication Analysis

Top Keywords

high-potential state
12
potential dependence
8
electrocatalysts alkaline
8
oer
8
xas raman
8
oer mechanism
8
low-potential state
8
reaction
6
mechanism
5
state
5

Similar Publications