Musculoskeletal models determine the effect of a soft active exosuit on muscle activations and forces during lifting and lowering tasks.

J Biomech

Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exosuits have the potential to mitigate musculoskeletal stress and prevent back injuries during industrial tasks. This study aimed to 1) validate the implementation of a soft active exosuit into a musculoskeletal model of the spine by comparing model predicted muscle activations versus corresponding surface EMG measurements, and 2) evaluate the effect of the exosuit on peak back and hip muscle forces. Fourteen healthy participants performed squat and stoop lift and lower tasks with boxes of 6 and 10 kg, with and without wearing a 2.7 kg soft active exosuit. Participant-specific musculoskeletal models, which included the exosuit, were created in OpenSim. Model validation focused on the back and hip extensors, where temporal agreement between EMG and model estimated muscle activity was generally strong to excellent (average cross-correlation coefficients ranging from 0.84 to 0.98). Root mean square errors of muscle activity (0.05-0.10) were similar with and without the exosuit, and compared well to prior model validation studies without the exosuit (average root mean square errors ranging from 0.05 to 0.19). In terms of performance, the exosuit reduced the estimated peak erector spinae forces during lifting and lowering phases across all lifting tasks but reduced peak hip extensor muscles forces only in a squat lift task of 10 kg. These reductions in total peak muscle forces were approximately 1.7-4.2 times greater than the corresponding exosuit assistance force, which were 146 ± 19 N and 102 ± 14 N at the times of peak erector spinae forces in lifting and lowering, respectively. Overall, the results support the hypothesis that exosuits reduce soft tissue loading, and thereby potentially reduce fatigue and injury risk during manual materials handling tasks. Incorporating exosuits into musculoskeletal models is a valid approach to understand the impact of exosuit assistance on muscle activity and forces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560613PMC
http://dx.doi.org/10.1016/j.jbiomech.2024.112322DOI Listing

Publication Analysis

Top Keywords

musculoskeletal models
12
soft active
12
active exosuit
12
forces lifting
12
lifting lowering
12
muscle activity
12
exosuit
10
muscle activations
8
peak hip
8
muscle forces
8

Similar Publications

To develop and validate a deep-learning-based algorithm for automatic identification of anatomical landmarks and calculating femoral and tibial version angles (FTT angles) on lower-extremity CT scans. In this IRB-approved, retrospective study, lower-extremity CT scans from 270 adult patients (median age, 69 years; female to male ratio, 235:35) were analyzed. CT data were preprocessed using contrast-limited adaptive histogram equalization and RGB superposition to enhance tissue boundary distinction.

View Article and Find Full Text PDF

Purpose: This study aimed to describe the structure, patient characteristics, and preliminary clinical outcomes of a dedicated interdisciplinary outpatient clinic for paediatric chronic and complex pain in Italy, with a focus on the feasibility of implementing a biopsychosocial care model.

Methods: We conducted a retrospective review of all patients referred to the Paediatric Specialised Pain Clinic of the University of Padua between January 2023 and May 2024. Data on demographics, clinical diagnoses, pain characteristics, treatments, and follow-up outcomes were collected.

View Article and Find Full Text PDF

Development and external validation of a clinical prediction model for new-onset atrial fibrillation in intensive care: a multicentre, retrospective cohort study.

Lancet Digit Health

September 2025

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

Background: New-onset atrial fibrillation, a condition associated with adverse outcomes in the short and long term, is common in patients admitted to intensive care units (ICUs). Identifying patients at high risk could inform trials of preventive interventions and help to target such interventions. We aimed to develop and externally validate a prediction model for new-onset atrial fibrillation in patients admitted to ICUs.

View Article and Find Full Text PDF

Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.

Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?

Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.

View Article and Find Full Text PDF

Dynamic optimization is a versatile control tool to determine optimal control inputs in a redundantly actuated wearable robot. However, dynamic optimization requires high computational resources for real-time implementation. In this paper, we present a bio-inspired control approach, based on the principle of muscle synergies, to reduce the computational cost of optimization.

View Article and Find Full Text PDF