Publications by authors named "Brett T Allaire"

Background: Low back pain is one of the most common orthopedic issues during pregnancy, sometimes linked to a "gestational lordosis" spine posture. The aims in this study were to explore how the lumbar spine changes, establish the relationship of lumbar curvature to torso anthropometry, and determine if anthropometry can be used to predict lumbar angle changes during pregnancy.

Methods: Anthropometry and comfortable standing spine curvature were measured longitudinally during the last seven months of pregnancy of eleven pregnant participants.

View Article and Find Full Text PDF

Background: Subject-specific musculoskeletal models may be used to estimate spine loads that cannot be measured in vivo. Model generation methods may use detailed measurements extracted from medical imaging, but it may be possible to create accurate models without these measurements. We aimed to determine which physiological and anthropometric factors are associated with spine loading and should be accounted for in model creation.

View Article and Find Full Text PDF

Pathologic vertebral fractures (PVF) are common and serious complications in patients with metastatic lesions affecting the spine. Accurate assessment of cancer patients' PVF risk is an unmet clinical need. Load-to-strength ratios (LSRs) evaluated in vivo by estimating vertebral loading from biomechanical modeling and strength from computed tomography imaging (CT) have been associated with osteoporotic vertebral fractures in older adults.

View Article and Find Full Text PDF

Exosuits have the potential to mitigate musculoskeletal stress and prevent back injuries during industrial tasks. This study aimed to 1) validate the implementation of a soft active exosuit into a musculoskeletal model of the spine by comparing model predicted muscle activations versus corresponding surface EMG measurements, and 2) evaluate the effect of the exosuit on peak back and hip muscle forces. Fourteen healthy participants performed squat and stoop lift and lower tasks with boxes of 6 and 10 kg, with and without wearing a 2.

View Article and Find Full Text PDF

The kinetic demands of the spine can be assessed using a top-down (TD) or bottom-up (BU) approach, which start calculations from the either the hands or from the feet, respectively. Biomechanists have traditionally favored a BU approach, though existing modeling approaches encourage a TD approach. Regardless of the approach the demands should be similar, provided the external forces and linked segment parameters are equivalently measured and modeled.

View Article and Find Full Text PDF

Astronauts have an increased risk of back pain and disc herniation upon returning to Earth. Thus, it is imperative to understand the effects of spaceflight and readaptation to gravity on the musculoskeletal tissues of the spine. Here we investigated whether ~6 months of spaceflight led to regional differences in bone loss within the vertebral body.

View Article and Find Full Text PDF

Trunk muscle size and location relative to the spine are key factors affecting their capacity to assist in trunk movement, strength, and function. There remains limited information on how age, weight and height affect these measurements across multiple spinal levels, and prior studies had limited samples in terms of size and ethnicity. In this study, we measured trunk muscles in coronal plane slices at T4 - L4 of CT scans acquired in 507 participants, aged 40-90 years, from the community-based Framingham Heart Study.

View Article and Find Full Text PDF

Musculoskeletal models can uniquely estimate in vivo demands and injury risk. In this study, we aimed to compare muscle activations from subject-specific thoracolumbar spine OpenSim models with recorded muscle activity from electromyography (EMG) during five dynamic tasks. Specifically, 11 older adults (mean = 65 years, SD = 9) lifted a crate weighted to 10% of their body mass in axial rotation, 2-handed sagittal lift, 1-handed sagittal lift, and lateral bending, and simulated a window opening task.

View Article and Find Full Text PDF

Context: Visceral adipose tissue (VAT) has been recognized to be a metabolically active fat depot that may have paracrine effects on surrounding tissues, including muscle. Since many adults accumulate VAT as they age, the effect of changes in VAT on muscle is of interest.

Objective: We determined the association between 6-year changes in VAT and paraspinal muscle density, an indicator of fatty infiltration.

View Article and Find Full Text PDF

Static biomechanical simulations are sometimes used to estimate in vivo kinetic demands because they can be solved efficiently, but this ignores any potential inertial effects. To date, comparisons between static and dynamic analyses of spinal demands have been limited to lumbar joint differences in young males performing sagittal lifts. Here we compare static and dynamic vertebral compressive and shear force estimates during axial, lateral, and sagittal lifting tasks across all thoracic and lumbar vertebrae in older men and women.

View Article and Find Full Text PDF

Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data.

View Article and Find Full Text PDF

Symptomatic lumbar spinal stenosis is a leading cause of pain and mobility limitation in older adults. It is clinically believed that patients with lumbar spinal stenosis adopt a flexed trunk posture or bend forward and alter their gait pattern to improve tolerance for walking. However, a biomechanical assessment of spine posture and motion during walking is broadly lacking in these patients.

View Article and Find Full Text PDF

Motion analysis is increasingly applied to spine musculoskeletal models using kinematic constraints to estimate individual intervertebral joint movements, which cannot be directly measured from the skin surface markers. Traditionally, kinematic constraints have allowed a single spinal degree of freedom (DOF) in each direction, and there has been little examination of how different kinematic constraints affect evaluations of spine motion. Thus, the objective of this study was to evaluate the performance of different kinematic constraints for inverse kinematics analysis.

View Article and Find Full Text PDF

Vertebral fractures (VFx) are common among older adults. Epidemiological studies report high occurrence of VFx at mid-thoracic and thoracolumbar regions of the spine; however, reasons for this observation remain poorly understood. Prior reports of high ratios of spinal loading to vertebral strength in the thoracolumbar region suggest a possible biomechanical explanation.

View Article and Find Full Text PDF

Thoracic kyphosis varies among healthy adults and typically increases with age. Excessive kyphosis (hyperkyphosis) is associated with negative health. Spinal alignment also affects spine loading, with implications for conditions such as vertebral fractures and back pain.

View Article and Find Full Text PDF

The pathomechanisms of curve progression in adolescent idiopathic scoliosis (AIS) remain poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information toward the improvement of current treatment strategies. This work therefore aimed at using subject-specific musculoskeletal full-body models of patients with AIS to predict segmental compressive forces around the curve apex and to investigate how these forces are affected by simulated load carrying.

View Article and Find Full Text PDF

Currently available musculoskeletal inverse-dynamics thoracolumbar spine models are entirely based on data from adults and might therefore not be applicable for simulations in children and adolescents. In addition, these models lack lower extremities, which are required for comprehensive evaluations of functional activities or therapeutic exercises. We therefore created OpenSim-based musculoskeletal full-body models including a detailed thoracolumbar spine for children and adolescents aged 6-18 years and validated by comparing model predictions to in vivo data.

View Article and Find Full Text PDF

Background: Cross-sectional studies suggest that trunk muscle morphology in the lumbar spine is an important determinant of kyphosis severity in older adults. The contribution of age-related changes in muscle morphology in the thoracic and lumbar spine to progression of kyphosis is not known. Our objective was to determine cross-sectional and longitudinal associations of thoracic and lumbar muscle size and density with kyphosis.

View Article and Find Full Text PDF

Objective: To evaluate the association between thoracic kyphosis and physical function.

Design: Prospective cohort.

Setting: Framingham, Massachusetts.

View Article and Find Full Text PDF

We created subject-specific musculoskeletal models of the thoracolumbar spine by incorporating spine curvature and muscle morphology measurements from computed tomography (CT) scans to determine the degree to which vertebral compressive and shear loading estimates are sensitive to variations in trunk anatomy. We measured spine curvature and trunk muscle morphology using spine CT scans of 125 men, and then created four different thoracolumbar spine models for each person: (i) height and weight adjusted (Ht/Wt models); (ii) height, weight, and spine curvature adjusted (+C models); (iii) height, weight, and muscle morphology adjusted (+M models); and (iv) height, weight, spine curvature, and muscle morphology adjusted (+CM models). We determined vertebral compressive and shear loading at three regions of the spine (T8, T12, and L3) for four different activities.

View Article and Find Full Text PDF

Purpose: Current standard methods to quantify disc height, namely distortion compensated Roentgen analysis (DCRA), have been mostly utilized in the lumbar and cervical spine and have strict exclusion criteria. Specifically, discs adjacent to a vertebral fracture are excluded from measurement, thus limiting the use of DCRA in studies that include older populations with a high prevalence of vertebral fractures. Thus, we developed and tested a modified DCRA algorithm that does not depend on vertebral shape.

View Article and Find Full Text PDF

Hyperkyphosis is a common spinal disorder in older adults, characterized by excessive forward curvature of the thoracic spine and adverse health outcomes. The etiology of hyperkyphosis has not been firmly established, but may be related to changes that occur with aging in the vertebrae, discs, joints, and muscles, which function as a unit to support the spine. Determining the contribution of genetics to thoracic spine curvature and the degree of genetic sharing among co-occurring measures of spine health may provide insight into the etiology of hyperkyphosis.

View Article and Find Full Text PDF

Background: Deficits in balance and muscle function are important risk factors for falls in older adults. Aging is associated with significant declines in muscle size and density, but associations of trunk muscle size and density with balance and falls in older adults have not been previously examined.

Methods: Trunk muscle size (cross-sectional area) and attenuation (a measure of tissue density) were measured in computed tomography scans (at the L2 lumbar level) in a cohort of older adults (mean ± SD age of 81.

View Article and Find Full Text PDF