A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Longitudinal Study of Trunk Muscle Properties and Severity of Thoracic Kyphosis in Women and Men: The Framingham Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cross-sectional studies suggest that trunk muscle morphology in the lumbar spine is an important determinant of kyphosis severity in older adults. The contribution of age-related changes in muscle morphology in the thoracic and lumbar spine to progression of kyphosis is not known. Our objective was to determine cross-sectional and longitudinal associations of thoracic and lumbar muscle size and density with kyphosis.

Methods: Participants were 1,087 women and men (mean age: 61 years) of the Framingham Heart Study who underwent baseline and follow-up quantitative computed tomography (QCT) scanning 6 years apart. We used QCT scans to measure trunk muscle cross-sectional area (CSA, cm2) and density (HU) at the thoracic and lumbar spine and Cobb angle (degrees) from T4 to T12. Linear regression models estimated the association between muscle morphology and kyphosis.

Results: At baseline, smaller muscle CSA and lower density of thoracic (but not lumbar) spine muscles were associated with a larger (worse) Cobb angle in women and men. For example, each standard deviation decrease in baseline thoracic paraspinal muscle CSA was associated with a larger baseline Cobb angle in women (3.7 degrees, 95% CI: 2.9, 4.5) and men (2.5 degrees, 95% CI: 1.6, 3.3). Longitudinal analyses showed that loss of muscle CSA and density at the thoracic and lumbar spine was not associated with progression of kyphosis.

Conclusions: Our findings suggest that kyphosis severity is related to smaller and lower density trunk muscles at the thoracic spine. Future studies are needed to determine how strengthening mid-back musculature alters muscle properties and contributes to preventing kyphosis progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376109PMC
http://dx.doi.org/10.1093/gerona/gly056DOI Listing

Publication Analysis

Top Keywords

lumbar spine
20
thoracic lumbar
20
trunk muscle
12
women men
12
muscle morphology
12
density thoracic
12
cobb angle
12
muscle csa
12
muscle
10
muscle properties
8

Similar Publications