Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gallium (Ga) recovery from the red mud, though important has never been successful due to several technical and economic reasons such as contaminant interference and the high cost of membranes due to their faster saturation resulting in the clogging of membranes with contaminants. This study demonstrated the recovery of Ga by a combination of HCl-based leaching, Fe/Al/Ti separation, and recovery of Ga using Cyphos IL 104-based solvent extraction and complexation of Ga with desferrioxamine B as a proof-of-principle of the GaLIophore technology. The main leaching parameters such as concentrations of acids, time and temperature of the reaction, and solid-to-liquid ratio have been systematically investigated. The optimal leaching conditions were determined as 4 mol/L HCl, 2 h time, 80 °C temperature, and solid-to-liquid ratio 1:20 (g/mL) attaining a more than 90% leaching of Ga. Subsequently, more than 99% Ga was extracted from the leachate using 0.05 mol/L Cyphos IL 104 at A:O ratio 1 and stripped by 0.01 mol/L HSO at O:A ratio 1 from the organic phase. Desferrioxamine B (DFOB) demonstrated selectivity by complexing with more than 90% Ga in a stripped solution. The interaction between extractable species of Ga and Cyphos IL 104 was studied by Density Functional Theory (DFT) calculations and infrared spectroscopy. The whole process demonstrated the recovery of Ga by more than 80% present in the red mud. Further, the preliminary economic analysis suggests that the process can be profitable when Fe, Al, Sc, and Ga are recovered at a minimum rate of 50, 50, 75, and 75%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122374DOI Listing

Publication Analysis

Top Keywords

red mud
12
gallium recovery
8
recovery red
8
solvent extraction
8
demonstrated recovery
8
solid-to-liquid ratio
8
mud integration
4
integration solvent
4
extraction siderophore
4
siderophore assisted
4

Similar Publications

Zeolite synthesis from fly ash offers recycling and environmental benefits for carbon dioxide capture, but varying fly ash composition from different sources has different compositions, leading to inconsistent adsorption results. To achieve high CO adsorption performance and stability in zeolite synthesis from fly ash systems, this study established an element-controlled simulated fly ash system with Ca/Fe gradient differences. Hydrothermal synthesis yielded zeolites with optimized oxide ratios for CO adsorption.

View Article and Find Full Text PDF

Phosphogypsum and Carbide Slag Synergy for Red Mud Soil Stabilization: Mechanical Performance, Environmental Impacts, and Micro-scale Mechanisms.

Environ Res

September 2025

China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:

The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.

View Article and Find Full Text PDF

Preparing red mud/phosphogypsum-based artificial soils for vegetation restoration is promising. However, how artificial soil develops during vegetation restoration is unclear, especially regarding the relationship between the bacterial community and the development of artificial soil. The bacterial community changes in the early-stage engineering simulation of red mud/phosphogypsum-based artificial soil vegetation restoration were analyzed for the first time in this paper.

View Article and Find Full Text PDF

This study revealed the synthesis of a novel metal-organic framework (MOF) through the reaction between red mud as an industrial waste material, and trimesic acid (TCA) for the adsorption of methyl orange (MO) through Response Surface Methodology (RSM) from aqueous solutions. The synthesis process utilized red mud as a sustainable source of metal ions and TCA as the organic linker to obtain Red Mud-Trimesic Acid MOF (RM/TCA-MOF) under hydrothermal conditions. The synthesized MOF was characterized using various techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission electron microscopy (TEM), and Thermogravimetric Analysis (TGA).

View Article and Find Full Text PDF

To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM content, FA content, CG aggregate replacement rate, and water-to-binder ratio on workability, mechanical properties, and frost resistance durability were systematically investigated through orthogonal experiments, with the underlying micro-mechanisms revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that workability is predominantly governed by the water-to-binder ratio, while the micro-aggregate effect of FA significantly enhances fluidity.

View Article and Find Full Text PDF