Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Dynamic cerebral perfusion CT (DCPCT) can provide valuable insight into cerebral hemodynamics by visualizing changes in blood within the brain. However, the associated high radiation dose of the standard DCPCT scanning protocol has been a great concern for the patient and radiation physics. Minimizing the x-ray exposure to patients has been a major effort in the DCPCT examination. A simple and cost-effective approach to achieve low-dose DCPCT imaging is to lower the x-ray tube current in data acquisition. However, the image quality of low-dose DCPCT will be degraded because of the excessive quantum noise.

Objective: To obtain high-quality DCPCT images, we present a statistical iterative reconstruction (SIR) algorithm based on penalized weighted least squares (PWLS) using adaptive prior image constrained total generalized variation (APICTGV) regularization (PWLS-APICTGV).

Methods: APICTGV regularization uses the precontrast scanned high-quality CT image as an adaptive structural prior for low-dose PWLS reconstruction. Thus, the image quality of low-dose DCPCT is improved while essential features of targe image are well preserved. An alternating optimization algorithm is developed to solve the cost function of the PWLS-APICTGV reconstruction.

Results: PWLS-APICTGV algorithm was evaluated using a digital brain perfusion phantom and patient data. Compared to other competing algorithms, the PWLS-APICTGV algorithm shows better noise reduction and structural details preservation. Furthermore, the PWLS-APICTGV algorithm can generate more accurate cerebral blood flow (CBF) map than that of other reconstruction methods.

Conclusions: PWLS-APICTGV algorithm can significantly suppress noise while preserving the important features of the reconstructed DCPCT image, thus achieving a great improvement in low-dose DCPCT imaging.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-240104DOI Listing

Publication Analysis

Top Keywords

low-dose dcpct
16
pwls-apictgv algorithm
16
dcpct
9
adaptive prior
8
prior image
8
image constrained
8
constrained total
8
total generalized
8
generalized variation
8
dynamic cerebral
8

Similar Publications

Background: Dynamic cerebral perfusion CT (DCPCT) can provide valuable insight into cerebral hemodynamics by visualizing changes in blood within the brain. However, the associated high radiation dose of the standard DCPCT scanning protocol has been a great concern for the patient and radiation physics. Minimizing the x-ray exposure to patients has been a major effort in the DCPCT examination.

View Article and Find Full Text PDF

Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low-dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor.

View Article and Find Full Text PDF