98%
921
2 minutes
20
To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g. The survival rate of in that vehicle system was 89% after storage for 30 days of storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450766 | PMC |
http://dx.doi.org/10.1021/acsami.4c10187 | DOI Listing |
Vet World
July 2025
Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates. Electronic address:
Limosilactobacillus reuteri probiotics were encapsulated in Kudzu starch (KS) and Hemp protein (HP) complex coacervates (CC), followed by spray drying, to enhance their stability and boost their viability. The optimized conditions for CC consisted of a KS:HP ratio of 1:2 (w/w) and pH 5.0.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China.
Unlabelled: Lactose intolerance is defined as the inability to digest lactose due to insufficient activity of the β-galactosidase enzyme, which catalyzes the hydrolysis of lactose into glucose and galactose. This study evaluated the potential probiotic properties of isolated S8, which exhibiting high β-galactosidase activity. The strain demonstrated higher survival rate under gastrointestinal stress, with 80% and 63% viability after 3 h in simulated gastric fluid and 8 h in intestinal fluid, respectively, while retaining 60.
View Article and Find Full Text PDFFish Physiol Biochem
September 2025
Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
Epigenetics has a profound impact on fish nutrition and aquaculture by regulating gene expression, physiological traits, and growth without altering the underlying DNA sequence. The changes, particularly DNA methylation, can be passed down through generations, enhancing productivity and disease resistance. External factors like temperature, stress, nutrition and illness exposure can also influence epigenetic changes, affecting protein, omega-3 fatty acids, and probiotics.
View Article and Find Full Text PDF